Effect of atmospheric oxidative plasma treatments on polypropylenic fibers surface: Characterization and reaction mechanisms

2013 ◽  
Vol 279 ◽  
pp. 285-292 ◽  
Author(s):  
Roberto Nisticò ◽  
Giuliana Magnacca ◽  
Maria Giulia Faga ◽  
Giovanna Gautier ◽  
Domenico D’Angelo ◽  
...  
2015 ◽  
Vol 27 (4) ◽  
pp. 129-136 ◽  
Author(s):  
Hui Yuen Peng ◽  
Mutharasu Devarajan ◽  
Teik Toon Lee ◽  
David Lacey

Purpose – The purpose of this paper is to investigate the efficiencies of argon (Ar), oxygen (O2) and O2 followed by Ar (O2→Ar) plasma treatments in terms of contaminant removal and wire bond interfacial adhesion improvement. The aim of this study is to resolve the “lifted ball bond” issue, which is one of the critical reliability checkpoints for light emitting diodes (LEDs) in automotive applications. Design/methodology/approach – Ar, O2 and O2→Ar plasma treatments were applied to LED chip bond pad prior to wire bonding process with different treatment durations. Various surface characterization methods and contact angle measurement were then used to characterize the surface properties of these chip bond pads. To validate the improvements of Ar, O2 and O2→Ar plasma treatments to the wire bond interfacial adhesion, the chip bond pads were wire bonded and examined with a ball shear test. Moreover, the contact resistance of the wire bond interfaces was also measured by using four-point probe electrical measurements to complement the interfacial adhesion validation. Findings – Surface characterization results show that O2→Ar plasma treatment was able to remove the contaminant while maintaining relatively low oxygen impurity content on the bond pad surface after the treatment and was more effective as compared with the O2 and Ar plasma treatments. However, O2→Ar plasma treatment also simultaneously reduced high-polarity bonds on the chip bond pad, leading to a lower surface free energy than that with the O2 plasma treatment. Ball shear test and contact resistance results showed that wire bond interfacial adhesion improvement after the O2→Ar plasma treatment is lower than that with the O2 plasma treatment, although it has the highest efficiency in surface contaminant removal. Originality/value – To resolve “lifted ball bond” issue, optimization of plasma gas composition ratios and parameters for respective Ar and O2 plasma treatments has been widely reported in many literatures; however, the O2→Ar plasma treatment is still rarely focused. Moreover, the observation that wire bond interfacial adhesion improvement after O2→Ar plasma treatment is lower than that with the O2 plasma treatment although it has the highest efficiency in surface contaminant removal also has not been reported on similar studies elsewhere.


2010 ◽  
Vol 7 (2) ◽  
pp. 123-150 ◽  
Author(s):  
Yang Yang ◽  
Mark Strobel ◽  
Seth Kirk ◽  
Mark J. Kushner

2009 ◽  
Vol 7 (2) ◽  
pp. 107-122 ◽  
Author(s):  
Seth Kirk ◽  
Mark Strobel ◽  
Chi-Ying Lee ◽  
Steven J. Pachuta ◽  
Michael Prokosch ◽  
...  

1991 ◽  
Vol 138 (4) ◽  
pp. 1171-1174 ◽  
Author(s):  
Rosa Lucia Torrisi ◽  
Patrizia Vasquez ◽  
Orazio Viscuso ◽  
Carmelo Magro ◽  
Fabio Iacona ◽  
...  

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
Jeff Gelles

Mechanoenzymes are enzymes which use a chemical reaction to power directed movement along biological polymer. Such enzymes include the cytoskeletal motors (e.g., myosins, dyneins, and kinesins) as well as nucleic acid polymerases and helicases. A single catalytic turnover of a mechanoenzyme moves the enzyme molecule along the polymer a distance on the order of 10−9 m We have developed light microscope and digital image processing methods to detect and measure nanometer-scale motions driven by single mechanoenzyme molecules. These techniques enable one to monitor the occurrence of single reaction steps and to measure the lifetimes of reaction intermediates in individual enzyme molecules. This information can be used to elucidate reaction mechanisms and determine microscopic rate constants. Such an approach circumvents difficulties encountered in the use of traditional transient-state kinetics techniques to examine mechanoenzyme reaction mechanisms.


Author(s):  
A. Angel ◽  
K. Miller ◽  
V. Seybold ◽  
R. Kriebel

Localization of specific substances at the ultrastructural level is dependent on the introduction of chemicals which will complex and impart an electron density at specific reaction sites. Peroxidase-antiperoxidase(PAP) methods have been successfully applied at the electron microscopic level. The PAP complex is localized by addition of its substrate, hydrogen peroxide and an electron donor, usually diaminobenzidine(DAB). On oxidation, DAB forms an insoluble polymer which is able to chelate with osmium tetroxide becoming electron dense. Since verification of reactivity is visual, discrimination of reaction product from osmiophillic structures may be difficult. Recently, x-ray microanalysis has been applied to examine cytochemical reaction precipitates, their distribution in tissues, and to study cytochemical reaction mechanisms. For example, immunoreactive sites labelled with gold have been ascertained by means of x-ray microanalysis.


Sign in / Sign up

Export Citation Format

Share Document