Role of surface roughness on corrosion and fretting corrosion behaviour of commercially pure titanium in Ringer’s solution for bio-implant application

2017 ◽  
Vol 401 ◽  
pp. 385-398 ◽  
Author(s):  
Bose Sivakumar ◽  
Lokesh Chandra Pathak ◽  
Raghuvir Singh
Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


2014 ◽  
Vol 28 (12) ◽  
pp. 1207-1218 ◽  
Author(s):  
Miguel A. Fernández-Rodríguez ◽  
Alda Y. Sánchez-Treviño ◽  
Elvira De Luna-Bertos ◽  
Javier Ramos-Torrecillas ◽  
Olga García-Martínez ◽  
...  

2020 ◽  
Vol 169 ◽  
pp. 110640
Author(s):  
Ehsan Farabi ◽  
Vahid Tari ◽  
Peter D. Hodgson ◽  
Gregory S. Rohrer ◽  
Hossein Beladi

2013 ◽  
Vol 753 ◽  
pp. 289-292
Author(s):  
Mariusz Jedrychowski ◽  
Jacek Tarasiuk ◽  
Brigitte Bacroix

EBSD investigation of texture and microstructure evolution during a complete thermomechanical treatment of commercially pure titanium (HCP-Ti) is presented. Titanium was cold rolled to reach various degrees of thickness reduction: 20%, 40% and 60%. Next, annealing in air atmosphere was conducted at different conditions to achieve the recrystallized state. EBSD topological maps were measured on RD-TD and RD-ND surface of each sample. Strong heterogeneity of deformed titanium microstructures is described with focus on the important role of twinning mechanisms. Texture evolution in investigated titanium appears to be limited, especially in recrystallized state. However some subtle mechanisms are discussed.


2012 ◽  
Vol 33 (3) ◽  
pp. 184-189 ◽  
Author(s):  
B. P. Gritsenko ◽  
Yu. F. Ivanov ◽  
N. N. Koval’ ◽  
K. V. Krukovskii ◽  
N. V. Girsova ◽  
...  

2020 ◽  
Vol 861 ◽  
pp. 23-27
Author(s):  
Wisan Charee ◽  
Viboon Tangwarodomnukun

Underwater laser machining process is a material removal technique that can minimize thermal damage and offer a higher machining rate than the laser ablation in ambient air. This study applied the underwater method associated with a nanosecond pulse laser for turning a commercially pure titanium rod. The effects of laser power, surface speed and number of laser passes on machined depth and surface roughness were investigated in this work. The results revealed that a deeper cut depth and smoother machined surface than those obtained from the laser ablation in ambient air were achievable when the underwater laser turning process was applied. The machined depth and surface roughness were found to significantly increase with the laser power and number of laser passes. The findings of this study can disclose the insight as well as potential of the underwater laser turning process for titanium and other similar metals.


Sign in / Sign up

Export Citation Format

Share Document