Regularities of the formation and the role of secondary structures in the improvement of the wear resistance of commercially pure titanium VT1-0

2012 ◽  
Vol 33 (3) ◽  
pp. 184-189 ◽  
Author(s):  
B. P. Gritsenko ◽  
Yu. F. Ivanov ◽  
N. N. Koval’ ◽  
K. V. Krukovskii ◽  
N. V. Girsova ◽  
...  
Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


2014 ◽  
Vol 28 (12) ◽  
pp. 1207-1218 ◽  
Author(s):  
Miguel A. Fernández-Rodríguez ◽  
Alda Y. Sánchez-Treviño ◽  
Elvira De Luna-Bertos ◽  
Javier Ramos-Torrecillas ◽  
Olga García-Martínez ◽  
...  

2020 ◽  
Vol 169 ◽  
pp. 110640
Author(s):  
Ehsan Farabi ◽  
Vahid Tari ◽  
Peter D. Hodgson ◽  
Gregory S. Rohrer ◽  
Hossein Beladi

2013 ◽  
Vol 753 ◽  
pp. 289-292
Author(s):  
Mariusz Jedrychowski ◽  
Jacek Tarasiuk ◽  
Brigitte Bacroix

EBSD investigation of texture and microstructure evolution during a complete thermomechanical treatment of commercially pure titanium (HCP-Ti) is presented. Titanium was cold rolled to reach various degrees of thickness reduction: 20%, 40% and 60%. Next, annealing in air atmosphere was conducted at different conditions to achieve the recrystallized state. EBSD topological maps were measured on RD-TD and RD-ND surface of each sample. Strong heterogeneity of deformed titanium microstructures is described with focus on the important role of twinning mechanisms. Texture evolution in investigated titanium appears to be limited, especially in recrystallized state. However some subtle mechanisms are discussed.


Alloy Digest ◽  
2021 ◽  
Vol 70 (4) ◽  

Abstract L. Klein Titan Grade 2 is an unalloyed, commercially pure titanium grade. It is the most widely used commercially pure titanium grade. It offers a combination of moderate strength and good ductility, with outstanding corrosion resistance in many challenging service environments. L. Klein Titan Grade 2 can operate in continuous service up to 425 °C (800 °F) and in intermittent service up to 540 °C (1005 °F). This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance and wear resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-177. Producer or source: L. Klein SA.


2006 ◽  
Vol 114 ◽  
pp. 63-68 ◽  
Author(s):  
Halina Garbacz ◽  
Wacław Pachla ◽  
Tadeusz Wierzchoń ◽  
Krzysztof Jan Kurzydlowski

The material examined was commercially pure titanium with intermetallic Ti-Al layers produced by magnetron sputtering followed by glow discharge assisted treatment. This material was subjected to hydrostatic extrusion at room temperature. This resulted in substantial grain size refinement in the titanium accompanied by significant property improvement. The intermetallic Ti- Al layers reduced the pressure required during hydroextrusion and also increased the microhardness and frictional wear resistance of the material.


2018 ◽  
Vol 781 ◽  
pp. 101-107
Author(s):  
Yurii Ivanov ◽  
Olga V. Krysina ◽  
Pavel Moskvin ◽  
Elizaveta A. Petrikova ◽  
Olga V. Ivanova ◽  
...  

Commercially pure A7 aluminum was exposed to surface modification in a single vacuum cycle which included vacuum arc evaporation and deposition of commercially pure titanium and intense electron beam irradiation and melting of the film–substrate system using a plasma-cathode pulsed electron source. The deposited Ti film thickness was 0.5 and 1 μm. The irradiated Ti–Al system revealed a multilayer multiphase structure consisting of submicro-and nanosized elements with intermetallic inclusions Al3Ti, Al2Ti, and TiAl3. The Ti film during irradiation broke up into fragments with their immersion in the molten Al surface layer to a depth of 20 μm. The modified material surpassed the initial aluminum in wear resistance by a factor of 2.4 and in microhardness by a factor larger than 4. The main cause for the high surface hardness and high wear resistance of the modified aluminum was likely the formation of both the intermetallic particles and the Ti-hardened transition layer.


2011 ◽  
Vol 217-218 ◽  
pp. 1050-1055 ◽  
Author(s):  
Yu Tong ◽  
Tian Wen Guo ◽  
Jing Wang ◽  
Hai Feng Liang ◽  
Mi Qian

The commercially pure(CP) titanium specimens were modified with Direct current(DC) plasma nitriding and arc ion plating of TiN film. The duplex treated titanium samples were characterized by scanning electron microscopy(SEM), microhardness tester and ball-on-disc tribotester. The results showed that the duplex treated CP titanium appeared uniform and bright golden, microhardness and wear resistance improved substantially and were superior to that of only TiN coated ones. All these results indicate plasma nitriding and TiN film deposition duplex treatment can improve surface characteristics of CP titanium significantly. The method can be applied to the titanium denture to improve the tribological properties and color.


Sign in / Sign up

Export Citation Format

Share Document