Comparison of castability and surface roughness of commercially pure titanium and cobalt-chromium denture frameworks

2001 ◽  
Vol 86 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Kyung-Soo Jang ◽  
Suk-Jin Youn ◽  
Yung-Soo Kim
Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


2011 ◽  
Vol 12 (3) ◽  
pp. 179-186
Author(s):  
Adriana Cristina Zavanelli ◽  
Recardo Alexandre Zavanelli ◽  
José Everaldo de Aquino Souza ◽  
Nelson Renato França Alves da Silva ◽  
Paulo Guilherme Coelho ◽  
...  

ABSTRACT Aim There is little information considering the framework association between cast clasps and attachments. The aim of this study was to evaluate the retention strength of frameworks match circumferential clasps and extra resilient attachment cast in three different alloys (cobalt-chromium, nickel-chromium titanium and commercially pure titanium), using two undercut (0.25 and 0.75 mm) and considering different period of time (0, 1/2, 1, 2, 3, 4 and 5 years). Methods Using two metallic matrices, representing a partially edentulous mandibular right hemiarch with the first molar crown, canine root and without premolars, 60 frameworks were fabricated. Three groups (n = 20) of each metal were cast and each group was divided into two subgroups (n = 10), corresponding the molar undercut of 0.25 mm and 0.75 mm. The nylon male was positioned at the matrix and attached to the acrylic resin of the prosthetic base. The samples were subjected to an insertion and removal test under artificial saliva environment. Results The data were analyzed and compared with ANOVAs and Tukey's test at 95% of probability. The groups cast in cobaltchromium and nickel-chromium-titanium had the highest mean retention strength (5.58 N and 6.36 N respectively) without significant difference between them, but statistically different from the group cast in commercially pure titanium, which had the lowest mean retention strength in all the periods (3.46 N). The association frameworks using nickel-chromium- titanium and cobalt-chromium could be used with 0.25 mm and 0.75 mm of undercut, but the titanium samples seems to decrease the retention strength, mainly in the 0.75 mm undercut. The circumferential clasps cast in commercially pure titanium used in 0.75 mm undercuts have a potential risk of fractures, especially after the 2nd year of use. Conclusion This in vitro study showed that the framework association between cast clasp and an extra resilient attachment are suitable to the three metals evaluated, but strongly suggest extra care with commercially pure titanium in undercut of 0.75 mm. Clinical significance Frameworks fabricated in Cp Ti tend to decrease in retentive strength over time and have a potential risk of fracture in less than 0.75 mm of undercut. How to cite this article Souza JEdA, da Silva NRFA, Coelho PG, Zavanelli AC, Ferracioli RCSR, Zavanelli RA. Retention Strength of Cobalt-Chromium vs Nickel-Chromium Titanium vs CP Titanium in a Cast Framework Association of Removable Partial Overdenture. J Contemp Dent Pract 2011;12(3):179-186.


2020 ◽  
Vol 861 ◽  
pp. 23-27
Author(s):  
Wisan Charee ◽  
Viboon Tangwarodomnukun

Underwater laser machining process is a material removal technique that can minimize thermal damage and offer a higher machining rate than the laser ablation in ambient air. This study applied the underwater method associated with a nanosecond pulse laser for turning a commercially pure titanium rod. The effects of laser power, surface speed and number of laser passes on machined depth and surface roughness were investigated in this work. The results revealed that a deeper cut depth and smoother machined surface than those obtained from the laser ablation in ambient air were achievable when the underwater laser turning process was applied. The machined depth and surface roughness were found to significantly increase with the laser power and number of laser passes. The findings of this study can disclose the insight as well as potential of the underwater laser turning process for titanium and other similar metals.


2012 ◽  
Vol 159 ◽  
pp. 56-68 ◽  
Author(s):  
Anish Kumar ◽  
Vinod Kumar ◽  
Jatinder Kumar

Titanium is present in the earth’s crust at a level about 0.6% and is therefore the fourth most abundant structural metal after aluminum, iron, and magnesium. High strength, low density, and excellent corrosion resistance are the main properties that make titanium attractive for a variety of applications. The major application of the material is in the aerospace industry, both in airframes,engine components,steam turbine blades, superconductors, missiles etc. or corrosion resistance, for example marine services, chemical, petrochemical, electronics industry, biomedical instruments etc.In this study, wire electrical discharge machining (WEDM) is adopted in machining of commercially pure titanium (Grade-2). During experiments, parameters such as Pulse on time, Pulse off time, Peak current, Spark Gap set Voltage, Wire Feed and Wire Tension were changed to explore their effect on the cutting rate, gap current and surface roughness of the machined specimens. The ranges of process parameters for the experiments were decided on the basis of literature survey and the pilot experiments conducted using one factor at a time approach(OFTA). It is found that the intensity of the process energy does affect the cutting rate, gap current and surface roughness as well as, the wire speed, wire tension and dielectric fluid pressure not seeming to have much of an influence.


2012 ◽  
Vol 23 (4) ◽  
pp. 387-393 ◽  
Author(s):  
Letícia Resende Davi ◽  
Daniela Nair Borges Felipucci ◽  
Raphael Freitas de Souza ◽  
Osvaldo Luiz Bezzon ◽  
Cláudia Helena Lovato-Silva ◽  
...  

Chemical disinfectants are usually associated with mechanical methods to remove stains and reduce biofilm formation. This study evaluated the effect of disinfectants on release of metal ions and surface roughness of commercially pure titanium, metal alloys, and heat-polymerized acrylic resin, simulating 180 immersion trials. Disk-shaped specimens were fabricated with commercially pure titanium (Tritan), nickel-chromium-molybdenum-titanium (Vi-Star), nickel-chromium (Fit Cast-SB Plus), and nickel-chromium-beryllium (Fit Cast-V) alloys. Each cast disk was invested in the flasks, incorporating the metal disk to the heat-polymerized acrylic resin. The specimens (n=5) were immersed in these solutions: sodium hypochlorite 0.05%, Periogard, Cepacol, Corega Tabs, Medical Interporous, and Polident. Deionized water was used as a control. The quantitative analysis of metal ion release was performed using inductively coupled plasma mass spectrometry (ELAN DRC II). A surface analyzer (Surftest SJ-201P) was used to measure the surface roughness (µm). Data were recorded before and after the immersions and evaluated by two-way ANOVA and Tukey's test (α=0.05). The nickel release proved most significant with the Vi-Star and Fit Cast-V alloys after immersion in Medical Interporous. There was a significant difference in surface roughness of the resin (p=0.011) after immersion. Cepacol caused significantly higher resin roughness. The immersion products had no influence on metal roughness (p=0.388). It could be concluded that the tested alloys can be considered safe for removable denture fabrication, but disinfectant solutions as Cepacol and Medical Interporous tablet for daily denture immersion should be used with caution because it caused greater resin surface roughness and greater ion release, respectively.


2009 ◽  
Vol 20 (3) ◽  
pp. 201-204 ◽  
Author(s):  
Marcelo Bighetti Toniollo ◽  
Rodrigo Tiossi ◽  
Ana Paula Macedo ◽  
Renata Cristina Silveira Rodrigues ◽  
Ricardo Faria Ribeiro ◽  
...  

This study evaluated the effects of fluoride-containing solutions on the surface of commercially pure titanium (CP Ti) obtained by casting. CP Ti specimens were fabricated and randomly assigned to 5 groups (n=10): group 1: stored in distilled water at 37 ± 1ºC; group 2: stored in distilled water at 37 ± 1ºC and daily immersed in 0.05% NaF for 3 min; group 3: stored in distilled water at 37 ± 1ºC and daily immersed in 0.2% NaF for 3 min; group 4: stored in distilled water at 37 ± 1ºC; and immersed in 0.05% NaF every 15 days for 3 min; and group 5: stored in distilled water at 37 ± 1ºC and immersed in 0.2% NaF every 15 days for 3 min. Surface roughness was measured with a profilometer immediately after metallographic polishing of the specimens (T0) and at 15-day intervals until completing 60 days of experiment (T15, T30, T45, T60). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) in surface roughness among the solutions. In conclusion, fluoride-containing solutions (pH 7.0) used as mouthwashes do not damage the surface of cast CP Ti and can be used by patients with titanium-based restorations.


Sign in / Sign up

Export Citation Format

Share Document