New insights into canted spiro carbon interstitial in graphite

2017 ◽  
Vol 426 ◽  
pp. 238-243 ◽  
Author(s):  
A.A. EL-Barbary
Keyword(s):  
1995 ◽  
Vol 379 ◽  
Author(s):  
S. Nilsson ◽  
H. P. Zeindl ◽  
A. Wolff ◽  
K. Pressel

ABSTRACTLow-temperature photoluminescence measurements were performed in order to probe the optical quality of SiGe/Si quantum-well wire structures fabricated by electron-beam lithography and subsequent reactive ion etching, having the patterned polymethylmethacrylate resist as an etch mask. In addition, one set of quantum-well wire structures was post-treated by means of annealing in a hydrogen environment. Our results show that even for the smallest wires of about 100nm in width, the wires exhibit phonon-resolved photoluminescence spectra, similar to that from the molecular beam eptitaxially grown SiGe single quantum well which was used as starting material for the patterning process. After the patterning process a new sharp peak appears in the photoluminescence spectra at 0.97eV in photon energy. Our investigation suggests that this feature is introduced by damage during the patterning process and most probably identical to the G-line, which previously was identified as originating from the dicarbon centre (substitutional carbon-interstitial carbon) in Si. This centre is known to be a very common endproduct of irradiating Si near room temperature which is the case at our patterning process.


1987 ◽  
Vol 104 ◽  
Author(s):  
J. M. Trombetta ◽  
G. D. Watkins

ABSTRACTThe Si-G15 EPR spectrum and the 0.79eV “C-line” luminescence spectra in silicon are shown to arise from an interstitial carbon - interstitial oxygen complex. The g-tensor and 13C hyperfine interaction tensor indicate the structure in the vicinity of the carbon atom while stress alignment studies reveal the configuration near the oxygen atom. The pairing of the two impurities leads to a lattice relaxation which serves to stabilize the complex against dissociation.


2008 ◽  
Vol 600-603 ◽  
pp. 413-416
Author(s):  
Adam Gali ◽  
T. Hornos ◽  
Nguyen Tien Son ◽  
Erik Janzén

We have studied the small clusters of silicon and carbon interstitials by ab initio supercell calculations in 4H-SiC. We found that silicon interstitials can form stable and electrically active complexes with each other or with a carbon interstitial. Local vibration modes and ionization energies were also calculated in order to help the identification of the defects. We propose that silicon interstitials can emit from these clusters at relatively high temperatures, which may play an important role in the formation of the DI center.


1977 ◽  
Vol 21 (1) ◽  
pp. 109-111 ◽  
Author(s):  
Y.H. Lee ◽  
L.J. Cheng ◽  
J.D. Gerson ◽  
P.M. Mooney ◽  
J.W. Corbett
Keyword(s):  

2001 ◽  
Vol 669 ◽  
Author(s):  
Julie L. Ngau ◽  
Peter B. Griffin ◽  
James D. Plummer

ABSTRACTIn this work, the time evolution of B transient enhanced diffusion (TED) suppression due to the incorporation of 0.018% substitutional carbon in silicon was studied. The combination of having low C concentrations, which reduce B TED without completely eliminating it, and having diffused B profiles for several times at a single temperature provides much data upon which various models for the suppression of B TED can be tested. Recent work in the literature has indicated that the suppression of B TED in C-rich Si is caused by non-equilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank-Turnbull reactions. Attempts to model our data with these two reactions revealed that the time evolved diffusion behavior of B was not accurately simulated and that an additional reaction that further reduces the Si self-inter- stitial concentration was necessary. In this work, we incorporate a carbon interstitial, carbon substitutional (CiCs) pairing mechanism into a comprehensive model that includes the C kick-out reaction, C Frank-Turnbull reaction, {311} defects, and boron interstitial clusters (BICs) and demonstrate that this model successfully simulates C suppression of B TED at 750 °C for anneal times ranging from 10 s to 60 min.


Sign in / Sign up

Export Citation Format

Share Document