Influence of condensation enhancement effect on AFM image contrast inversion in hydrophilic nanocapillaries

2019 ◽  
Vol 471 ◽  
pp. 621-626 ◽  
Author(s):  
Ivan Mukhin ◽  
Mikhail Zhukov ◽  
Alexey Mozharov ◽  
Alexey Bolshakov ◽  
Alexander Golubok
2012 ◽  
Vol 19 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Karsten H. Wrede ◽  
Sören Johst ◽  
Philipp Dammann ◽  
Lale Umutlu ◽  
Marc U. Schlamann ◽  
...  

1999 ◽  
Vol 140 (3-4) ◽  
pp. 298-303 ◽  
Author(s):  
Tetsuya Minobe ◽  
Takayuki Uchihashi ◽  
Takahiro Tsukamoto ◽  
Shigeki Orisaka ◽  
Yasuhiro Sugawara ◽  
...  

2006 ◽  
Vol 24 (1) ◽  
pp. 149-152 ◽  
Author(s):  
Xia Han ◽  
Jian Xu ◽  
Hong-Lai Liu ◽  
Ying Hu

Author(s):  
F. A. Heckman ◽  
E. Redman ◽  
J.E. Connolly

In our initial publication on this subject1) we reported results demonstrating that contrast is the most important factor in producing the high image quality required for reliable image analysis. We also listed the factors which enhance contrast in order of the experimentally determined magnitude of their effect. The two most powerful factors affecting image contrast attainable with sheet film are beam intensity and KV. At that time we had only qualitative evidence for the ranking of enhancing factors. Later we carried out the densitometric measurements which led to the results outlined below.Meaningful evaluations of the cause-effect relationships among the considerable number of variables in preparing EM negatives depend on doing things in a systematic way, varying only one parameter at a time. Unless otherwise noted, we adhered to the following procedure evolved during our comprehensive study:Philips EM-300; 30μ objective aperature; magnification 7000- 12000X, exposure time 1 second, anti-contamination device operating.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
Wah Chi

Resolution and contrast are the important factors to determine the feasibility of imaging single heavy atoms on a thin substrate in an electron microscope. The present report compares the atom image characteristics in different modes of fixed beam dark field microscopy including the ideal beam stop (IBS), a wire beam stop (WBS), tilted illumination (Tl) and a displaced aperture (DA). Image contrast between one Hg and a column of linearly aligned carbon atoms (representing the substrate), are also discussed. The assumptions in the present calculations are perfectly coherent illumination, atom object is represented by spherically symmetric potential derived from Relativistic Hartree Fock Slater wave functions, phase grating approximation is used to evaluate the complex scattering amplitude, inelastic scattering is ignored, phase distortion is solely due to defocus and spherical abberation, and total elastic scattering cross section is evaluated by the Optical Theorem. The atom image intensities are presented in a Z-modulation display, and the details of calculation are described elsewhere.


Author(s):  
J. G. Adams ◽  
M. M. Campbell ◽  
H. Thomas ◽  
J. J. Ghldonl

Since the introduction of epoxy resins as embedding material for electron microscopy, the list of new formulations and variations of widely accepted mixtures has grown rapidly. Described here is a resin system utilizing Maraglas 655, Dow D.E.R. 732, DDSA, and BDMA, which is a variation of the mixtures of Lockwood and Erlandson. In the development of the mixture, the Maraglas and the Dow resins were tested in 3 different volumetric proportions, 6:4, 7:3, and 8:2. Cutting qualities and characteristics of stability in the electron beam and image contrast were evaluated for these epoxy mixtures with anhydride (DDSA) to epoxy ratios of 0.4, 0.55, and 0.7. Each mixture was polymerized overnight at 60°C with 2% and 3% BDMA.Although the differences among the test resins were slight in terms of cutting ease, general tissue preservation, and stability in the beam, the 7:3 Maraglas to D.E.R. 732 ratio at an anhydride to epoxy ratio of 0.55 polymerized with 3% BDMA proved to be most consistent. The resulting plastic is relatively hard and somewhat brittle which necessitates trimming and facing the block slowly and cautiously to avoid chipping. Sections up to about 2 microns in thickness can be cut and stained with any of several light microscope stains and excellent quality light photomicrographs can be taken of such sections (Fig. 1).


Author(s):  
H. Koike ◽  
T. Matsuo ◽  
K. Ueno ◽  
M. Suzuki

Since the identification of single atoms was achieved by Crewe et al, scanning transmission microscopy has been put into pratical use. Recently they applied this method to the quantitative mass analysis of DNA.As pointed out previously the chromatic aberration which decreases the image contrast and quality, does not affect a scanning transmission image as it does a conventional transmission electron microscope image. Thus, the STEM method is advantageous for thick specimen. Further this method employs a high sensitive photomultiplier tube which also functions as an image intensifier. This detection method is effective for the observation of living specimens or easily damaged specimens. In this respect the scanning transmission microscope with high accelerating voltage is necessary.Since Uyeda's experiments of crystalline materials, many workers have been discussed how thick specimens can be observed by CTEM. With biological specimens, R. Szirmae reported on the decrease in the image contrast of rabbit psoas muscle sections at various accelerating voltages and specimen thicknesses.


Author(s):  
M. D. Coutts ◽  
E. R. Levin

On tilting samples in an SEM, the image contrast between two elements, x and y often decreases to zero at θε, which we call the no-contrast angle. At angles above θε the contrast is reversed, θ being the angle between the specimen normal and the incident beam. The available contrast between two elements, x and y, in the SEM can be defined as,(1)where ix and iy are the total number of reflected and secondary electrons, leaving x and y respectively. It can easily be shown that for the element x,(2)where ib is the beam current, isp the specimen absorbed current, δo the secondary emission at normal incidence, k is a constant, and m the reflected electron coefficient.


Sign in / Sign up

Export Citation Format

Share Document