Two-dimensional single-layer PC6 as promising anode materials for Li-ion batteries: The first-principles calculations study

2020 ◽  
Vol 510 ◽  
pp. 145493 ◽  
Author(s):  
Jianning Zhang ◽  
Lianqiang Xu ◽  
Chen Yang ◽  
Xiuying Zhang ◽  
Ling Ma ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (69) ◽  
pp. 40340-40347 ◽  
Author(s):  
Hongli Yu ◽  
Wei Lin ◽  
Yongfan Zhang ◽  
Yi Li ◽  
Kaining Ding ◽  
...  

The electronic properties and metal ion (Li, Na, Mg) storage capabilities of the two-dimensional Ti3N2 monolayer and its Ti3N2X2 derivatives (X = O, F, OH) as anode materials in rechargeable batteries are investigated by DFT computations.


2015 ◽  
Vol 3 (21) ◽  
pp. 11246-11252 ◽  
Author(s):  
Gen-Cai Guo ◽  
Xiao-Lin Wei ◽  
Da Wang ◽  
Yanping Luo ◽  
Li-Min Liu

The pristine and defect-containing phosphorene as promising anode materials for Li-ion batteries (LIBs) have been systematically investigated by first-principles calculations.


Author(s):  
Chunmei Tang ◽  
Xiaoxu Wang ◽  
Shengli Zhang

Two-dimensional MXene nanomaterials are promising anode materials for Li-ion batteries (LIBs) due to their excellent conductivity, large surface area, and high Li capability.


RSC Advances ◽  
2017 ◽  
Vol 7 (32) ◽  
pp. 20049-20056 ◽  
Author(s):  
Young-Kyu Han ◽  
Jaeik Yoo ◽  
Taeeun Yim

We presented a computational screening protocol for the efficient development of cathode-electrolyte interphase (CEI)-forming additive materialsviathe first-principles calculations.


2021 ◽  
Vol 894 ◽  
pp. 61-66
Author(s):  
Rui Zhi Dong

Due to the development of various mobile electronic devices, such as electric vehicles, rechargeable ion batteries are becoming more and more important. However, the current commercial lithium-ion batteries have obvious defects, including poor safety from Li dendrite and flammable electrolyte, quick capacity loss and low charging and discharging rate. It is very important to find a better two-dimensional material as the anode of the battery to recover the disadvantages. In this paper, first principles calculations are used to explore the performances of VS2 bilayer and VS2 / graphene heterostructure as the anodes of Li ion batteries. Based on the calculation of the valences, binding energy, intercalation voltage, charge transfer and diffusion barrier of Li, it is found that the latter can be used as a better anode material from the perspective of insertion voltage and binding energy. At the same time, the former one is better in terms of diffusion barrier. Our study provides a comprehensive understanding on VS2 based 2D anodes.


2020 ◽  
Vol 22 (21) ◽  
pp. 12260-12266
Author(s):  
Xin-Yue Lin ◽  
Fan-Shun Meng ◽  
Qi-Chao Liu ◽  
Qi Xue ◽  
Hui Zhang

A series of two-dimensional (2D) single-layer binary group VA–VA crystals, where VA represents P, As, Sb and Bi, are explored by the first-principles calculations.


2018 ◽  
Vol 1 (6) ◽  
pp. 209-214 ◽  
Author(s):  
Po-Tuan Chen ◽  
Fang-Haur Yang ◽  
Thangavel Sangeetha ◽  
Hong-Min Gao ◽  
K. David Huang

NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850138
Author(s):  
Seungwook Son ◽  
Dongwook Kim ◽  
Sutassana Na-Phattalung ◽  
Jisoon Ihm

Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.


2017 ◽  
Vol 53 (71) ◽  
pp. 9942-9945 ◽  
Author(s):  
G. Naaresh Reddy ◽  
Rakesh Parida ◽  
Santanab Giri

First principles calculations on Li salts of organic heterocyclic superhalogens confirm that they can be used as potential electrolytes in Li-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document