First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850138
Author(s):  
Seungwook Son ◽  
Dongwook Kim ◽  
Sutassana Na-Phattalung ◽  
Jisoon Ihm

Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

Author(s):  
Bohayra Mortazavi ◽  
Masoud Shahrokhi ◽  
Xiaoying Zhuang ◽  
Alexander V. Shapeev ◽  
Timon Rabczuk

In the latest experimental advances in the field of two-dimensional (2D) materials, penta-PdPS and penta-PdPSe layered materials have been fabricated. In this work, we conduct first-principles calculations to explore the...


2020 ◽  
Vol 22 (21) ◽  
pp. 12260-12266
Author(s):  
Xin-Yue Lin ◽  
Fan-Shun Meng ◽  
Qi-Chao Liu ◽  
Qi Xue ◽  
Hui Zhang

A series of two-dimensional (2D) single-layer binary group VA–VA crystals, where VA represents P, As, Sb and Bi, are explored by the first-principles calculations.


2010 ◽  
Vol 1246 ◽  
Author(s):  
Massimo Camarda ◽  
pietro delugas ◽  
Andrea Canino ◽  
Andrea Severino ◽  
nicolo piluso ◽  
...  

AbstractShockley-type Stacking faults (SSF) in hexagonal Silicon Carbide polytypes have received considerable attention in recent years since it has been found that these defects are responsible for the degradation of forward I-V characteristics in p-i-n diodes. In order to extend the knowledge on these kind of defects and theoretically support experimental findings (specifically, photoluminescence spectral analysis), we have determined the Kohn-Sham electronic band structures, along the closed path Γ-M-K-Γ, using density functional theory. We have also determined the energies of the SSFs with respect to the perfect crystal finding that the (35) and (44) SSFs have unexpectedly low formation energies, for this reason we could expect these two defects to be easily generated/expanded either during the growth or post-growth process steps.


Author(s):  
Manoj K. Jana ◽  
C. N. R. Rao

The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS 2 . In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


2019 ◽  
Vol 4 (5) ◽  
pp. 1113-1123 ◽  
Author(s):  
Yinglu Jia ◽  
Min Zhao ◽  
Gaoyang Gou ◽  
Xiao Cheng Zeng ◽  
Ju Li

A new group of two-dimensional layered materials with intrinsic ferroelectricity and antiferroelectricity are identified through first-principles calculations.


2020 ◽  
Vol 510 ◽  
pp. 145493 ◽  
Author(s):  
Jianning Zhang ◽  
Lianqiang Xu ◽  
Chen Yang ◽  
Xiuying Zhang ◽  
Ling Ma ◽  
...  

2015 ◽  
Vol 17 (19) ◽  
pp. 13013-13020 ◽  
Author(s):  
Deniz Çakır ◽  
Deniz Kecik ◽  
Hasan Sahin ◽  
Engin Durgun ◽  
Francois M. Peeters

First-principles calculations indicate that due to its mechanical stability and promising electronic properties, boron-phosphide monolayer would be a promising candidate for application in a p–n junction.


Sign in / Sign up

Export Citation Format

Share Document