Anti-reflective Biomimetic Nanostructures Formed by 2D Arrays of Silica Colloidal Particles via Self-Assembly Using Sublimation, Polymer Solidification, and Thermal Fusion

2021 ◽  
pp. 150406
Author(s):  
Goshi Kuno ◽  
Kota Sakaguchi
Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


Langmuir ◽  
1995 ◽  
Vol 11 (8) ◽  
pp. 2975-2978 ◽  
Author(s):  
Mariko Yamaki ◽  
Junichi Higo ◽  
Kuniaki Nagayama

2018 ◽  
Vol 90 (6) ◽  
pp. 1085-1098 ◽  
Author(s):  
Isha Malhotra ◽  
Sujin B. Babu

Abstract In the present study we are performing simulation of simple model of two patch colloidal particles undergoing irreversible diffusion limited cluster aggregation using patchy Brownian cluster dynamics. In addition to the irreversible aggregation of patches, the spheres are coupled with isotropic reversible aggregation through the Kern–Frenkel potential. Due to the presence of anisotropic and isotropic potential we have also defined three different kinds of clusters formed due to anisotropic potential and isotropic potential only as well as both the potentials together. We have investigated the effect of patch size on self-assembly under different solvent qualities for various volume fractions. We will show that at low volume fractions during aggregation process, we end up in a chain conformation for smaller patch size while in a globular conformation for bigger patch size. We also observed a chain to bundle transformation depending on the attractive interaction strength between the chains or in other words depending on the quality of the solvent. We will also show that bundling process is very similar to nucleation and growth phenomena observed in colloidal system with short range attraction. We have also studied the bond angle distribution for this system, where for small patches only two angles are more probable indicating chain formation, while for bundling at very low volume fraction a tail is developed in the distribution. While for the case of higher patch angle this distribution is broad compared to the case of low patch angles showing we have a more globular conformation. We are also proposing a model for the formation of bundles which are similar to amyloid fibers using two patch colloidal particles.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (14) ◽  
pp. 2099-2110 ◽  
Author(s):  
Yu Gao ◽  
Richard Lakerveld

A novel feedback control method to align colloidal particles reliably via directed self-assembly in a microfluidic device is presented.


2017 ◽  
Vol 15 (5) ◽  
pp. 051401-51405 ◽  
Author(s):  
Mincheng Zhong Mincheng Zhong ◽  
Ziqiang Wang Ziqiang Wang ◽  
and Yinmei Li and Yinmei Li

Soft Matter ◽  
2020 ◽  
Vol 16 (34) ◽  
pp. 8024-8032
Author(s):  
Shanshan Li ◽  
Linna Wang ◽  
Bing Liu

A simple yet effective method was developed to fabricate bicone-shaped colloidal particles and their magnetically switchable self-assembly was investigated.


Sign in / Sign up

Export Citation Format

Share Document