Exposure of NiFe-LDH active sites by cation–exchange to promote photoelectrochemical water splitting performance

2021 ◽  
Vol 570 ◽  
pp. 151134
Author(s):  
D. Amaranatha Reddy ◽  
K. Arun Joshi Reddy ◽  
Madhusudana Gopannagari ◽  
Yujin Kim ◽  
A. Putta Rangappa ◽  
...  
2019 ◽  
Vol 7 (40) ◽  
pp. 23038-23045 ◽  
Author(s):  
Rongrong Pan ◽  
Jia Liu ◽  
Yuemei Li ◽  
Xinyuan Li ◽  
Erhuan Zhang ◽  
...  

Here we show a novel strategy for tailoring the synergistic electrical properties of metal@semiconductor hybrid nanocrystals (HNCs) based on cation exchange-enabled electronic doping.


2018 ◽  
Vol 54 (71) ◽  
pp. 9993-9996 ◽  
Author(s):  
Xiaoyan Cheng ◽  
Jia Liu ◽  
Xiaodong Wan ◽  
Hongzhi Wang ◽  
Yuemei Li ◽  
...  

Au@Sn2S3 and Au@SnS2 core–shell hybrid nanocrystals were respectively accessed via aqueous cation exchange-mediated growth by using different phosphine ligands.


2020 ◽  
Vol 49 (3) ◽  
pp. 588-592 ◽  
Author(s):  
Fusheng Li ◽  
Ziqi Zhao ◽  
Hao Yang ◽  
Dinghua Zhou ◽  
Yilong Zhao ◽  
...  

A cobalt oxide catalyst prepared by a flame-assisted deposition method on the surface of FTO and hematite for electrochemical and photoelectrochemical water oxidation, respectively.


2020 ◽  
Vol 10 (18) ◽  
pp. 6266-6273
Author(s):  
Yalan Zhang ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jung Huang ◽  
Yanping Hou ◽  
...  

Excellent electrochemical water splitting with remarkable durability can provide a solution to satisfy the increasing global energy demand in which the electrode materials play an important role.


2019 ◽  
Author(s):  
Jiajia Tao ◽  
Hong-Ping Ma ◽  
Kaiping Yuan ◽  
Yang Gu ◽  
Jianwei Lian ◽  
...  

<div>As a promising oxygen evolution reaction semiconductor, TiO2 has been extensively investigated for solar photoelectrochemical water splitting. Here, a highly efficient and stable strategy for rationally preparing GaON cocatalysts on TiO2 by atomic layer deposition is demonstrated, which we show significantly enhances the</div><div>photoelectrochemical performance compared to TiO2-based photoanodes. For TiO2@20 nm-GaON core-shell nanowires a photocurrent density up to 1.10 mA cm-2 (1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of TiO2 NWs. Furthermore, the oxygen vacancy formation on GaON as well as the band gap matching with TiO2 not only provides more active sites for water oxidation but also enhances light absorption to promote interfacial charge separation and migration. Density functional theory studies of model systems of GaON-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaON core-shell nanowires provide a deeper understanding and universal strategy for enhancing photoelectrochemical performance of photoanodes now available. </div>


Sign in / Sign up

Export Citation Format

Share Document