scholarly journals Qualitative numerical study of simultaneous high-G-intensified gas–solids contact, separation and segregation in a bi-disperse rotating fluidized bed in a vortex chamber

2016 ◽  
Vol 27 (4) ◽  
pp. 1453-1463 ◽  
Author(s):  
Juray De Wilde ◽  
George Richards ◽  
Sofiane Benyahia
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1233
Author(s):  
Umair Jamil Ur Rahman ◽  
Artur Krzysztof Pozarlik ◽  
Thomas Tourneur ◽  
Axel de Broqueville ◽  
Juray De Wilde ◽  
...  

In this paper, an intensified spray-drying process in a novel Radial Multizone Dryer (RMD) is analyzed by means of CFD. A three-dimensional Eulerian–Lagrangian multiphase model is applied to investigate the effect of solids outlet location, relative hot/cold airflow ratio, and droplet size on heat and mass transfer characteristics, G-acceleration, residence time, and separation efficiency of the product. The results indicate that the temperature pattern in the dryer is dependent on the solids outlet location. A stable, symmetric spray behavior with maximum evaporation in the hot zone is observed when the solids outlet is placed at the periphery of the vortex chamber. The maximum product separation efficiency (85 wt %) is obtained by applying high G-acceleration (at relative hot/cold ratio of 0.75) and narrow droplet size distribution (45–70 µm). The separation of different sized particles with distinct drying times is also observed. Smaller particles (<32 µm) leave the reactor via the gas outlet, while the majority of big particles leave it via the solids outlet, thus depicting in situ particle separation. The results revealed the feasibility and benefits of a multizone drying operation and that the RMD can be an attractive solution for spray drying technology.


Author(s):  
Anton Pylypenko ◽  
Yevgenii Rastigejev ◽  
Lijun Wang ◽  
Abolghasem Shahbazi

The objective of this work is to analyze the dynamics and regimes of cold gas-solid flow in a biomass gasifier that is built at North Carolina Agricultural and Technical State University and to identify its corresponding ranges of operating conditions. The value of the minimum fluidization velocity Umf ≈ 8 cm/s has been found experimentally in a series of measurements of a pressure drop in the fluidized bed filled with Gledart type-B silica sand for the range of superficial gas velocities between 0 and 40 cm/s. To complement the experimental results, a set of three-dimensional numerical simulations of the isothermal gas-solid flow based on Eulerian-Eulerian approach has been performed. The analysis of the fluidization characteristics such as axial void fraction distributions has allowed us to evaluate the dependence of the bed expansion ratios from the flow superficial velocity. Good agreement between experimental and numerical results for the considered operating conditions of the gasifier has been observed.


AIChE Journal ◽  
2016 ◽  
Vol 62 (6) ◽  
pp. 1970-1985 ◽  
Author(s):  
Tianyu Wang ◽  
Yurong He ◽  
Tianqi Tang ◽  
Wengen Peng

2018 ◽  
Vol 849 ◽  
pp. 860-884 ◽  
Author(s):  
Petteri Sippola ◽  
Jari Kolehmainen ◽  
Ali Ozel ◽  
Xiaoyu Liu ◽  
Pentti Saarenrinne ◽  
...  

The effects of triboelectricity in a small-scale fluidized bed of polyethylene particles were investigated by imaging the particle layer in the vicinity of the column wall and by measuring the pressure drop across the bed. The average charge on the particles was altered by changing the relative humidity of the gas. A triboelectric charging model coupled with a computational fluid dynamics–discrete element method (CFD-DEM) model was utilized to simulate gas–particle flow in the bed. The electrostatic forces were evaluated based on a particle–particle particle–mesh method, accounting for the surface charge on the insulating walls. It was found that simulations with fixed and uniform charge distribution among the particles capture remarkably well both the agglomeration of the particles on the wall and the associated decrease in the pressure drop across the bed. With a dynamic tribocharging model, the charging rate had to be accelerated to render the computations affordable. Such simulations with an artificial acceleration significantly over-predict charge segregation and the wall becomes rapidly sheeted with a single layer of strongly charged particles.


Sign in / Sign up

Export Citation Format

Share Document