scholarly journals Numerical Study toward Optimization of Spray Drying in a Novel Radial Multizone Dryer

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1233
Author(s):  
Umair Jamil Ur Rahman ◽  
Artur Krzysztof Pozarlik ◽  
Thomas Tourneur ◽  
Axel de Broqueville ◽  
Juray De Wilde ◽  
...  

In this paper, an intensified spray-drying process in a novel Radial Multizone Dryer (RMD) is analyzed by means of CFD. A three-dimensional Eulerian–Lagrangian multiphase model is applied to investigate the effect of solids outlet location, relative hot/cold airflow ratio, and droplet size on heat and mass transfer characteristics, G-acceleration, residence time, and separation efficiency of the product. The results indicate that the temperature pattern in the dryer is dependent on the solids outlet location. A stable, symmetric spray behavior with maximum evaporation in the hot zone is observed when the solids outlet is placed at the periphery of the vortex chamber. The maximum product separation efficiency (85 wt %) is obtained by applying high G-acceleration (at relative hot/cold ratio of 0.75) and narrow droplet size distribution (45–70 µm). The separation of different sized particles with distinct drying times is also observed. Smaller particles (<32 µm) leave the reactor via the gas outlet, while the majority of big particles leave it via the solids outlet, thus depicting in situ particle separation. The results revealed the feasibility and benefits of a multizone drying operation and that the RMD can be an attractive solution for spray drying technology.

Author(s):  
Ramin Dabirian ◽  
Shihao Cui ◽  
Ilias Gavrielatos ◽  
Ram Mohan ◽  
Ovadia Shoham

During the process of petroleum production and transportation, equipment such as pumps and chokes will cause shear effects which break the dispersed droplets into smaller size. The smaller droplets will influence the separator process significantly and the droplet size distribution has become a critical criterion for separator design. In order to have a better understanding of the separation efficiency, estimation of the dispersed-phase droplet size distribution is very important. The objective of this paper is to qualitatively and quantitatively investigate the effect of shear imparted on oil-water flow by centrifugal pump. This paper presents available published models for the calculation of droplet size distribution caused by different production equipment. Also detailed experimental data for droplet size distribution downstream of a centrifugal pump are presented. Rosin-Rammler and Log-Normal Distributions utilizing dmax Pereyra (2011) model as well as dmin Kouba (2003) model are used in order to evaluate the best fit distribution function to simulate the cumulative droplet size distribution. The results confirm that applying dmax Pereyra (2011) model leads to Rosin-Rammler distribution is much closer to the experimental data for low shear conditions, while the Log-Normal distribution shows better performance for higher shear rates. Furthermore, the predictions of Modified Kouba (2003) dmin model show good results for predicting the droplet distribution in centrifugal pump, and even better predictions under various ranges of experiments are achieved with manipulating cumulative percentage at minimum droplet diameter F(Dmin).


Author(s):  
Jose G. Severino ◽  
Luis E. Gomez ◽  
Steve J. Leibrandt ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Large gravity separation tanks play an essential role in crude oil production in many fields worldwide. These tanks are used to separate water from an oil-rich stream before safely returning it to the environment. The oil/water dispersion enters the tanks through a feed spreader consisting of an array of pipes with small effluent nozzles. A major challenge is being able to predict oil/water dispersion distribution along the spreader as well as, the maximum water droplet size exiting through the effluent nozzles, under a given set of conditions. The capacity of the studied tank is 80,000 barrels (12,719 m3). Current feed stream is about 60,000 bpd (9,540 m3/day) of wet crude containing about 20% water by volume. A significant increase in flow rates and water volume fraction is anticipated [7], as more wells are added and existing ones mature. This work is aimed at investigating the separation performance of these tanks under current and future flow conditions; focusing primarily on the flow phenomena and droplet size distribution inside the spreader. The main objective is then to identify the impact of the spreader’s geometry and piping configuration on flow behavior and tank’s separation efficiency. The final product provides key information needed for mechanistic modeling the tank separation performance and optimizing tank components’ design. The feed spreader is simulated using Computational Fluid Dynamics (CFD) to assess oil/water flow distribution inside the network. Droplet size distribution along branch-pipes effluent nozzles in, including droplet breakup and coalescence has been studied using the Gomez mechanistic model [2] with input from CFD results. An experimental investigation of the spreader using a scaled prototype was also conducted to better understand flow phenomena and verify the CFD models. Results confirm the occurrence of significant maldistribution of the water and oil phases along the spreader that could impair separation efficiency.


Author(s):  
Shaoping Shi ◽  
Christopher Guenther ◽  
Stefano Orsino

Gasification converts the carbon-containing material into a synthesis gas (syngas) which can be used as a fuel to generate electricity or used as a basic chemical building block for a large number of uses in the petrochemical and refining industries. Based on the mode of conveyance of the fuel and the gasifying medium, gasification can be classified into fixed or moving bed, fluidized bed, and entrained flow reactors. Entrained flow gasifiers normally feature dilute flow with small particle size and can be successfully modeled with the Discrete Phase Method (DPM). For the other types, the Eulerian-Eulerian (E-E) or the so called two-fluid multiphase model is a more appropriate approach. The E-E model treats the solid phase as a distinct interpenetrating granular “fluid” and it is the most general-purposed multi-fluid model. This approach provides transient, three-dimensional, detailed information inside the reactor which would otherwise be unobtainable through experiments due to the large scale, high pressure and/or temperature. In this paper, a transient, three-dimensional model of the Power Systems Development Facility (PSDF) transport gasifier will be presented to illustrate how Computational Fluid Dynamics (CFD) can be used for large-scale complicated geometry with detailed physics and chemistry. In the model, eleven species are included in the gas phase while four pseudo-species are assumed in the solid phase. A total of sixteen reactions, both homogeneous (involving only gas phase species) and heterogeneous (involving species in both gas and solid phases), are used to model the coal gasification chemistry. Computational results have been validated against PSDF experimental data from lignite to bituminous coals under both air and oxygen blown conditions. The PSDF gasifier geometry was meshed with about 70,000, hexahedra-dominated cells. A total of six cases with different coal, feed gas, and/or operation conditions have been performed. The predicted and measured temperature profiles along the gasifier and gas compositions at the outlet agreed fairly well.


Author(s):  
Umair Jamil Ur Rahman ◽  
Ilias Baiazitov ◽  
Artur Pozarlik ◽  
Gerrit Brem

In order to develop an alternative spray drying technology, a high drying rate in a smaller volume must be achieved. In this paper, results of CFD study are presented, carried out to investigate the possibility of spray drying in a novel design vortex chamber. The model is validated against experimental data, that makes a good agreement with an average error of 7% with only air and 24% with water spray. Results of temperature fields and droplet impact positions are discussed. The computations demonstrate that vortex chamber spray dryer can be an attractive solution for drying technology. Keywords: CFD; spray drying; vortex chamber; atomization; 


Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 410 ◽  
Author(s):  
Wentao Li ◽  
Lijuan Qian ◽  
Shaobo Song ◽  
Xiaokai Zhong

In pneumatic atomizers, the shaping air holes play an important role in the spraying system. The pressure and intersection of shaping air holes are the two most important parameters in engineering. In this paper, the Euler–Lagrangian method is used to describe the two-phase spray flow. The spraying process of the pneumatic nozzle is simulated numerically, and the experiment is designed to verify this simulation. By setting different air pressures and distances between the intersection and the paint hole, target surface pressure and droplet size distribution are investigated in detail, in order to explore the relationship between shaping air holes in pneumatic nozzles and overspray. From the results of the numerical simulation, it is found that an increase in the distance between the intersection and the paint hole increases the gas velocity at the central axis of the nozzle and the central pressure of the target surface, the droplet size becomes larger, and the distribution of droplets is more concentrated on the target surface, which easily leads to overspray. With the increase in the pressure of the shaping air holes, the central pressure of the target surface decreases, and the ovality of the spraying pattern on the target surface increases.


Author(s):  
Lele Yang ◽  
Jing Wang ◽  
Li Zou

Abstract The gas–liquid cylindrical cyclone (GLCC) employs gravitational and centrifugal forces to realize gas-liquid separation. The aim of this study is to understand the droplet size distribution and pressure control in the GLCC via experiment and numerical analysis. The droplet size and pressure distributions were measured using Malvern RTsizer and pressure transmitters, respectively. The Discrete Phase Model was used to numerically analyze the swirling hydrodynamics of the GLCC. The results showed that the increase in the gas superficial velocity decreased the droplet size distribution at the inlet as a whole due to the shear effect and flow instability. The increase in the liquid superficial velocity only increased the small droplet size distribution at the inlet for the limitation of the gas’s carrying capacity. The pressure loss mainly occurred at the inlet and the overflow outlet. When the liquid level was remained below the inlet and above the liquid outlet, the liquid level and the liquid outlet section approximately met the Bernoulli equation for a finite large flow beam. With the increase in the pressure at the gas outlet, the liquid film fell back and the separation efficiency increased gradually. These results are helpful for further spreading applications of the GLCC in industry.


Author(s):  
K. Willenborg ◽  
M. Klingsporn ◽  
S. Tebby ◽  
T. Ratcliffe ◽  
P. Gorse ◽  
...  

Within the European research project (Advanced Transmission and Oil System Concepts), a systematic study of the separation efficiency of a typical aeroengine air∕oil separator design was conducted. The main objectives were to obtain a basic understanding of the main separation mechanisms and to identify the relevant parameters affecting the separation efficiency. The results of the study contribute to an optimized separator technology. Nonintrusive optical measurement techniques like laser diffraction and multiple wavelength extinction were applied to analyze the separation efficiency and identify potential optimization parameters. Oil mist with defined oil droplet size distribution was supplied to the breather. By simultaneously measuring particle size and oil concentration upstream and downstream of the breather, the separation mechanism was analyzed and the separation efficiency was assessed. In addition, the pressure drop across the separator was measured. The pressure drop is an important design feature and has to be minimized for proper sealing of the engine bearing chambers. The experimental programe covered a variation of air flow, oil flow, shaft speed, and droplet size. The main emphasis of the investigations was on the separation of small droplets with a diameter of up to 10μm. The following trends on separation efficiency of small droplets were observed: The separation efficiency increases with increasing rotational speed, with increasing particle size, and with decreasing air flow rate. In parallel, the pressure drop across the breather increases with increasing speed and increasing air flow.


1968 ◽  
Vol 14 (1) ◽  
pp. 19-22
Author(s):  
Yu. V. Kosmodem'yanskii ◽  
A. P. Fokin ◽  
A. N. Planovskii

Sign in / Sign up

Export Citation Format

Share Document