scholarly journals Experimental and numerical study of wall layer development in a tribocharged fluidized bed

2018 ◽  
Vol 849 ◽  
pp. 860-884 ◽  
Author(s):  
Petteri Sippola ◽  
Jari Kolehmainen ◽  
Ali Ozel ◽  
Xiaoyu Liu ◽  
Pentti Saarenrinne ◽  
...  

The effects of triboelectricity in a small-scale fluidized bed of polyethylene particles were investigated by imaging the particle layer in the vicinity of the column wall and by measuring the pressure drop across the bed. The average charge on the particles was altered by changing the relative humidity of the gas. A triboelectric charging model coupled with a computational fluid dynamics–discrete element method (CFD-DEM) model was utilized to simulate gas–particle flow in the bed. The electrostatic forces were evaluated based on a particle–particle particle–mesh method, accounting for the surface charge on the insulating walls. It was found that simulations with fixed and uniform charge distribution among the particles capture remarkably well both the agglomeration of the particles on the wall and the associated decrease in the pressure drop across the bed. With a dynamic tribocharging model, the charging rate had to be accelerated to render the computations affordable. Such simulations with an artificial acceleration significantly over-predict charge segregation and the wall becomes rapidly sheeted with a single layer of strongly charged particles.

2017 ◽  
Vol 21 (2) ◽  
pp. 1093-1104 ◽  
Author(s):  
Yerbol Sarbassov ◽  
Azd Zayoud ◽  
Pinakeswar Mahanta ◽  
Sai Gu ◽  
Panneerselvam Ranganathan ◽  
...  

Pressurized circulating fluidized bed technology is a potentially promising development for clean coal technologies. The current work explores the hydrodynamics of a small-scale circulating fluidized bed at elevated operating pressures ranging from 0.10 to 0.25 MPa. The initial experiments were performed at atmospheric pressure with air and O2/CO2 environments as the fluidization gas to simulate the hydrodynamics in a circulating fluidized bed. A comparison between the effects of air and O2/CO2 mixtures on the hydrodynamics was outlined in this paper for particles of 160 ?m diameter. A small but distinct effect on axial void-age was observed due to the change in gas density in the dense zone of the bed at lower gas velocity, while only minimal differences were noticed at higher gas velocities. The hydrodynamic parameters such as pressure drop and axial voidage profile along the height were reported at two different bed inventories (0.5 and 0.75 kg) for three mean particle sizes of 160, 302, and 427 ?m and three superficial gas velocities. It was observed that the operating pressure had a significant effect on the hydrodynamic parameters of bed pressure drop and axial bed void-age profiles. The effect of solids loading resulted in an exponential change in pressure drop profile at atmospheric pressure as well as at elevated pressure. The experimental results on hydrodynamic parameters are in reasonable agreement with published observations in the literature.


Author(s):  
A. Amnache ◽  
M. Omri ◽  
L. G. Fre´chette

The paper presents the design and analysis of differential pressure micro-flowmeter, for low flows of gases (0.1–120 mg/s) with different inlet pressure conditions (1–4 bars). The device consists of a planar micro orifice obstruction in a rectangular microchannel, with two pressure ports, upstream and downstream of the constriction. The particularities of this micro orifice is the small scale and the planar two-dimensional configuration, i.e. only in the width of the rectangular microchannel changes. A series of micro orifice sizes will be studied, with hydraulic diameters ranging from 200 to 465 μm and channel Reynolds numbers up to 7000. The geometric parameters of these micro orifices were determined to have a measurable pressure drop and to avoid choking. The calculation of the pressure drop through a micro orifice are represented using analytical equations, and modeled numerically using computational fluid dynamics to further investigate the flow patterns and 3D effects. The discharge coefficient is determined for each orifice micro-flowmeter by numerical analysis. This work aims to implement integrated mass flow measurements in micro chemical and fluidic devices that cannot use macroscopic mass flow meters, either due to their large volume, high cost, or inability to withstand harsh environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueling Cheng ◽  
Yunshan Wang

AbstractOptoelectronic devices in the UV range have many applications including deep-UV communications, UV photodetectors, UV spectroscopy, etc. Graphene has unique exciton resonances, that have demonstrated large photosensitivity across the UV spectrum. Enhancing UV absorption in graphene has the potential to boost the performance of the various opto-electronic devices. Here we report numerical study of UV absorption in graphene on aluminum and magnesium hole-arrays. The absorption in a single-layer graphene on aluminum and magnesium hole-arrays reached a maximum value of 28% and 30% respectively, and the absorption peak is tunable from the UV to the visible range. The proposed graphene hybrid structure does not require graphene to be sandwiched between different material layers and thus is easy to fabricate and allows graphene to interact with its surroundings.


2021 ◽  
pp. 1-13
Author(s):  
Gabriela Saldanha Soares ◽  
Scarlet Neves Tuchtenhagen ◽  
Luiz Antonio de Almeida Pinto ◽  
Carlos Alberto Severo Felipe

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4417
Author(s):  
Tingting Xu ◽  
Hongxia Zhao ◽  
Miao Wang ◽  
Jianhui Qi

Printed circuit heat exchangers (PCHEs) have the characteristics of high temperature and high pressure resistance, as well as compact structure, so they are widely used in the supercritical carbon dioxide (S-CO2) Brayton cycle. In order to fully study the heat transfer process of the Z-type PCHE, a numerical model of traditional Z-type PCHE was established and the accuracy of the model was verified. On this basis, a new type of spiral PCHE (S-ZPCHE) is proposed in this paper. The segmental design method was used to compare the pressure changes under 5 different spiral angles, and it was found that increasing the spiral angle θ of the spiral structure will reduce the pressure drop of the fluid. The effects of different spiral angles on the thermal-hydraulic performance of S-ZPCHE were compared. The results show that the pressure loss of fluid is greatly reduced, while the heat transfer performance is slightly reduced, and it was concluded that the spiral angle of 20° is optimal. The local fluid flow states of the original structure and the optimal structure were compared to analyze the reason for the pressure drop reduction effect of the optimal structure. Finally, the performance of the optimal structure was analyzed under variable working conditions. The results show that the effect of reducing pressure loss of the new S-ZPCHE is more obvious in the low Reynolds number region.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Peter Ostermeier ◽  
Annelies Vandersickel ◽  
Stephan Gleis ◽  
Hartmut Spliethoff

Gas–solid fluidized bed reactors play an important role in many industrial applications. Nevertheless, there is a lack of knowledge of the processes occurring inside the bed, which impedes proper design and upscaling. In this work, numerical approaches in the Eulerian and the Lagrangian framework are compared and applied in order to investigate internal fluidized bed phenomena. The considered system uses steam/air/nitrogen as fluidization gas, entering the three-dimensional geometry through a Tuyere nozzle distributor, and calcium oxide/corundum/calcium carbonate as solid bed material. In the two-fluid model (TFM) and the multifluid model (MFM), both gas and powder are modeled as Eulerian phases. The size distribution of the particles is approximated by one or more granular phases with corresponding mean diameters and a sphericity factor accounting for their nonspherical shape. The solid–solid and fluid–solid interactions are considered by incorporating the kinetic theory of granular flow (KTGF) and a drag model, which is modified by the aforementioned sphericity factor. The dense discrete phase model (DDPM) can be interpreted as a hybrid model, where the interactions are also modeled using the KTGF; however, the particles are clustered to parcels and tracked in a Lagrangian way, resulting in a more accurate and computational affordable resolution of the size distribution. In the computational fluid dynamics–discrete element method (CFD–DEM) approach, particle collisions are calculated using the DEM. Thereby, more detailed interparticulate phenomena (e.g., cohesion) can be assessed. The three approaches (TFM, DDPM, CFD–DEM) are evaluated in terms of grid- and time-independency as well as computational demand. The TFM and CFD–DEM models show qualitative accordance and are therefore applied for further investigations. The MFM (as a variation of the TFM) is applied in order to simulate hydrodynamics and heat transfer to immersed objects in a small-scale experimental test rig because the MFM can handle the required small computational cells. Corundum is used as a nearly monodisperse powder, being more suitable for Eulerian models, and air is used as fluidization gas. Simulation results are compared to experimental data in order to validate the approach. The CFD–DEM model is applied in order to predict mixing behavior and cohesion effects of a polydisperse calcium carbonate powder in a larger scale energy storage reactor.


Sign in / Sign up

Export Citation Format

Share Document