scholarly journals Effects of dietary florfenicol contained feeds on growth and immunity of European seabass (Dicentrarchus labrax) in flow-through and recirculating aquaculture system

2021 ◽  
Vol 19 ◽  
pp. 100602
Author(s):  
Qian Zhang ◽  
Yingqi Zhang ◽  
Xianyu Zhang ◽  
Md Hasim Rabbi ◽  
Rui Guo ◽  
...  
Aquaculture ◽  
2015 ◽  
Vol 436 ◽  
pp. 151-159 ◽  
Author(s):  
Violaine Colson ◽  
Bastien Sadoul ◽  
Claudiane Valotaire ◽  
Patrick Prunet ◽  
Matthieu Gaumé ◽  
...  

2020 ◽  
Vol 33 ◽  
pp. 19
Author(s):  
Evanthia Chatzoglou ◽  
Panorea Kechagia ◽  
Aristeidis Tsopelakos ◽  
Helen Miliou

European sea bass and Ulva sp. were co-cultured in different tanks of an indoor Recirculating Aquaculture System (Ulva-RAS) with bacterial biofilter, in an effort to optimize the efficiency of the system and to further decrease the waste effluent. A system with similar culture conditions, without Ulva, was used as a control-RAS to elucidate integration effects on growth performance and chemical composition of sea bass. The role of Ulva on N and P concentrations, gas (O2, CO2) and pH in water was also investigated. Fish were fed a diet of fish oil replacement (55%) with a mixture of rapeseed oil and palm oil (1:1). Our data showed that Ulva could uptake N and P nutrients, but could also enrich sea water with phosphates. Sea bass reared in Ulva-RAS exhibited isometric growth, while fish in control-RAS showed a positive allometric growth and an increased variance of body weight and length. In addition, sea bass in Ulva-RAS demonstrated significantly higher levels of condition factor (K), feed intake, protein, lipid, P, EPA and DHA content (% wet weight of total body) and lipid productive value, compared to fish in control-RAS. Ulva, after bi-weekly culture, showed increased protein content (60%) compared to wild seaweed collected nearshore. Cultivated Ulva obtained dark green color, doubled chlorophyll concentrations, and exhibited lower levels of saturated and higher levels of certain monounsaturated and n-3 polyunsaturated fatty acids, indicating increased photosynthetic activity. Present results revealed the beneficial effects of Ulva on sea bass growth and quality, which led to an improved response to the nutritional stress imposed by the fish oil replacement with vegetable oils, thus contributing to a sustainable aquaculture. Moreover, it was concluded that Ulva could improve water quality by increasing pH and O2, reducing CO2 and contribute to bioremediation of ammonia and nitrates from water in integrated aquaculture.


2018 ◽  
Vol 19 (1) ◽  
pp. 37-45
Author(s):  
Woo Jin Lee ◽  
Seon Woo Baek ◽  
Ha Na Seo ◽  
Byeong Wook Kong ◽  
Deog Gwan Ra ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1306
Author(s):  
Pedro Almeida ◽  
Laurent Dewasme ◽  
Alain Vande Wouwer

The recirculating aquaculture system (RAS) is a land-based water treatment technology, which allows for farming aquatic organisms, such as fish, by reusing the water in the production (often less than 5%). This technology is based on the use of filters, either mechanical or biological, and can, in principle, be used for any species grown in aquaculture. Due to the low recirculation rate, ammonia accumulates in the system and must be converted into nitrate using nitrification reactors. Although less toxic for fish, nitrate can also be further reduced into nitrogen gas by the use of denitrification biofilters which may create several issues, such as incomplete denitrification, resulting in toxic substances, such as nitrite and nitric oxide, or a waste of carbon source in excess. Control of the added quantity of carbon source in the denitrification biofilter is then mandatory to keep nitrate/nitrite concentrations under toxic levels for fish and in accordance with local effluent regulations, and to reduce costs related to wasted organic carbon sources. This study therefore investigates the application of different control methodologies to a denitrification reactor in a RAS. To this end, a numerical simulator is built to predict the RAS behavior and to allow for the comparison of different control approaches, in the presence of changes in the operating conditions, such as fish density and biofilter removal efficiency. First, a classical proportional-integral-derivative (PID) controller was designed, based on an SIMC tuning method depending on the amount of ammonia excreted by fish. Then, linearizing and cascade controllers were considered as possible alternatives.


Sign in / Sign up

Export Citation Format

Share Document