scholarly journals Dietary Bacillus subtilis relieved the growth retardation, hepatic failure, and antioxidative depression induced by ochratoxin A in Thinlip Mullet (Liza ramada)

2022 ◽  
Vol 22 ◽  
pp. 100984
Author(s):  
Fawzy Magouz ◽  
Hasnaa Abu-Ghanima ◽  
Amr I. Zaineldin ◽  
Mahmoud S. Gewaily ◽  
Ali Soliman ◽  
...  
2018 ◽  
Vol 11 (4) ◽  
pp. 559-570 ◽  
Author(s):  
H.N. Hu ◽  
X. Jia ◽  
Y.P. Wang ◽  
Z.H. Liang

Ochratoxin A (OTA) is an important mycotoxin that contaminates a variety of agricultural products. The cell-free supernatant of Bacillus subtilis CW14 liquid cultures were reported previously to be capable of removing OTA efficiently. In this work, we examined several substances that are probably involved in this removal of OTA using in vitro experiments. The strain CW14 culture supernatant that was separated by ultrafiltration showed that the fractions collected at >10 kDa and <3 kDa had a significant ability to reduce OTA (84.9 and 74.8%, respectively) when incubated with 6 μg/ml OTA at 37 °C for 24 h. A putative metalloenzyme was responsible for the activity of the >10-kDa fraction, which was confirmed by the detrimental effects of heat treatments or addition of SDS, proteinase K, or EDTA. Subsequently, a carboxypeptidase (CP) gene that was likely related to the enzymatic conversion of OTA by the >10-kDa fraction was cloned from the B. subtilis CW14 genome, and over-expressed in Escherichia coli. The recombinant CP degraded 71.3% of OTA at 37 °C for 24 h, and ochratoxin α (OTα) was confirmed as a degradation product. From the <3-kDa fraction, some small peptides (1.7 kDa >Mw >0.7 kDa) were purified and decreased OTA by 45.0% under the same conditions, but no product was detected. These peptides were presumed to be capable of binding OTA due to their affinity with the OTA molecule, and the OTA-peptide complexes escaped from the extraction procedures for OTA quantification. These results indicated there was a probable synergistic effect that was involved in removal of OTA by the strain CW14 culture supernatant, which included enzymatic degradation by a CP and physical adsorption by some small peptides.


1978 ◽  
Vol 24 (5) ◽  
pp. 563-568 ◽  
Author(s):  
U. Singer ◽  
R. Röschenthaler

Ochratoxin A (OTA) added during the exponential growth phase at a concentration higher than 12 μg/ml caused autolysis of Bacillus subtilis. Optical density of cultures decreased, and at higher concentrations the cultures became sterile. Optimum OTA-induced lysis was about pH 5. At concentrations below 10 μg/ml, protein synthesis was inhibited more strongly than RNA synthesis. Cell wall synthesis was also strongly inhibited. A fraction extracted from the lysates had the property of a lysis inhibitor. The relevance of this fraction in respect to autolysis is discussed.


2021 ◽  
Vol 22 (21) ◽  
pp. 12059
Author(s):  
Hanrui Qing ◽  
Xueting Huo ◽  
Shimeng Huang ◽  
Lihong Zhao ◽  
Jianyun Zhang ◽  
...  

Ochratoxin A (OTA) is toxic to animals and threatens food safety through residues in animal tissues. A novel degrading strain Bacillus subtilis ANSB168 was isolated and further investigated. We cloned d-alanyl-d-alanine carboxypeptidase DacA and DacB from ANSB168 and over-expressed them in Escherichia coli Rosetta (DE3). Then, we characterized the OTA degradation mechanism of DacA and DacB, which was degrading OTA into OTα. A total of 45 laying hens were divided into three equal groups. The control group was fed basal feed, and other groups were administered with OTA (250 μg/kg of feed). A freeze-dried culture powder of ANSB168 (3 × 107 CFU/g, 2 kg/T of feed) was added to one of the OTA-fed groups for 28 days from day one of the experiment. We found that OTA significantly damaged the kidney and liver, inducing inflammation and activating the humoral immune system, causing oxidative stress in the layers. The ANSB168 bioproduct was able to alleviate OTA-induced kidney and liver damage, relieving OTA-induced inflammation and oxidative stress. Overall, DacA and DacB derived from ANSB168 degraded OTA into OTα, while the ANSB168 bioproduct was able to alleviate damages induced by OTA in laying hens.


Toxicon ◽  
2019 ◽  
Vol 158 ◽  
pp. S67 ◽  
Author(s):  
Haining Hu ◽  
Xin Jia ◽  
Yuping Wang ◽  
Lu Xiong ◽  
Mengxue Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document