Does water facilitate gene flow in spore-producing plants? Insights from the fine-scale genetic structure of the aquatic moss Rhynchostegium riparioides (Brachytheciaceae)

2013 ◽  
Vol 108 ◽  
pp. 1-6 ◽  
Author(s):  
V. Hutsemékers ◽  
O.J. Hardy ◽  
A. Vanderpoorten
2019 ◽  
Author(s):  
Angelica Menchaca ◽  
Natalia Rossi ◽  
Jeremy Froidevaux ◽  
Isabela Dias-freedman ◽  
Anthony Caragiulo ◽  
...  

Abstract Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. Results We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE= 0.61, HO= 0.55, and NA=9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. Conclusions The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.


2020 ◽  
Vol 93 (5) ◽  
pp. 652-661 ◽  
Author(s):  
Georgina Sola ◽  
Verónica El Mujtar ◽  
Leonardo Gallo ◽  
Giovanni G Vendramin ◽  
Paula Marchelli

Abstract Understanding the impact of management on the dispersal potential of forest tree species is pivotal in the context of global change, given the implications of gene flow on species evolution. We aimed to determine the effect of logging on gene flow distances in two Nothofagus species from temperate Patagonian forests having high ecological relevance and wood quality. Therefore, a total of 778 individuals (mature trees and saplings) of Nothofagus alpina and N. obliqua, from a single plot managed 20 years ago (2.85 hectares), were mapped and genotyped at polymorphic nuclear microsatellite loci. Historical estimates of gene dispersal distance (based on fine-scale spatial genetic structure) and contemporary estimates of seed and pollen dispersal (based on spatially explicit mating models) were obtained. The results indicated restricted gene flow (gene distance ≤ 45 m, both pollen and seed), no selfing and significant seed and pollen immigration from trees located outside the studied plot but in the close surrounding area. The size of trees (diameter at breast height and height) was significantly associated with female and/or male fertility. The significant fine-scale spatial genetic structure was consistent with the restricted seed and pollen dispersal. Moreover, both estimates of gene dispersal (historical and contemporary) gave congruent results. This suggests that the recent history of logging within the study area has not significantly influenced on patterns of gene flow, which can be explained by the silviculture applied to the stand. The residual tree density maintained species composition, and the homogeneous spatial distribution of trees allowed the maintenance of gene dispersal. The short dispersal distance estimated for these two species has several implications both for understanding the evolution of the species and for defining management, conservation and restoration actions. Future replication of this study in other Nothofagus Patagonian forests would be helpful to validate our conclusions.


2018 ◽  
Author(s):  
Brandon M. Lind ◽  
Malcolm P. North ◽  
Patricia E. Maloney ◽  
Andrew J. Eckert

AbstractHistorically, frequent, low-severity fires in dry western North American forests were a major driver of ecological patterns and processes, creating resilient ecosystems dominated by widely-spaced pine species. However, a century of fire-suppression has caused overcrowding, altering forest composition to shade-tolerant species, while increasing competition and leaving trees stressed and susceptible to pathogens, insects, and high-severity fire. Exacerbating the issue, fire incidence is expected to increase with changing climate, while fire season has been observed to begin earlier and last longer than historic trends. Forest thinning and prescribed fire have been identified as important management tools to mitigate these risks. Yet little is known of how thinning, fire, or their interaction affect contemporary evolutionary processes of constituent pine species that influence fitness and play an important role in the opportunity for selection and population persistence. We assessed the impact of widely used fuel reduction treatments and prescribed fire on fine-scale gene flow on an ecologically important and historically dominant shade-intolerant pine species of the Sierra Nevada, Pinus lambertiana Dougl. Treatment prescription (no-thin-no-fire, thin-no-fire, and fire-and-thin) was found to differentially affect both fine-scale spatial and genetic structure as well as effective gene flow in this species. Specifically, the thin-no-fire prescription increases genetic structure (spatial autocorrelation of relatives) between adults and seedlings, while seed and pollen dispersal increase and decrease, respectively, as a function of increasing disturbance intensity. While these results may be specific to the stands at our study site, they indicate how assumptions relating to genetic effects based on spatial structure can be misleading. It is likely that these disequilibrated systems will continue to evolve on unknown evolutionary trajectories. The long-term impacts of management practices on reduced fitness from inbreeding depression should be continually monitored to ensure resilience to increasingly frequent and severe fire, drought, and pest stresses.


2019 ◽  
Author(s):  
Angelica Menchaca ◽  
Natalia Rossi ◽  
Jeremy Froidevaux ◽  
Isabela Dias-freedman ◽  
Anthony Caragiulo ◽  
...  

Abstract Background Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. Results We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE= 0.61, HO= 0.55, and NA=9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. Conclusions The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.


2016 ◽  
Vol 32 (2) ◽  
pp. 135-145 ◽  
Author(s):  
Arthur Tavares de Oliveira Melo ◽  
Edivani Villaron Franceschinelli

Abstract:The Atlantic forest is the biome most severely affected by deforestation in Brazil. Cabralea canjerana spp. canjerana is a dioecious tree species with widespread distribution in the Neotropical region. This species is considered a model to ascertain population ecology parameters for endangered plant species from the Atlantic forest. Fine-scale spatial genetic structure and pollen-mediated gene flow are crucial information in landscape genetics and evolutionary ecology. A total of 192 adults and 121 offspring were sampled in seven C. canjerana populations in the Southern Minas Gerais State, Brazil, to assess whether pollen-mediated gene flow is able to prevent spatial genetic structure within and among Atlantic forest fragments. Several molecular ecology parameters were estimated using microsatellite loci. High levels of genetic diversity (HE = 0.732) and moderate population structure (θ = 0.133) were recorded. No significant association between kinship and spatial distance amongst individuals within each population (Sp = 0.000109) was detected. Current pollen-mediated gene flow occurs mainly within forest fragments, probably due to short-distance flights of the pollinator of C. canjerana, and also the forest fragmentation may have restricted flight distance. The high levels of genetic differentiation found amongst the seven sites sampled demonstrated how habitat fragmentation affects the gene flow process in natural areas.


2011 ◽  
Vol 57 (4) ◽  
pp. 949-958 ◽  
Author(s):  
Massimo Scandura ◽  
Laura Iacolina ◽  
Claudia Capitani ◽  
Andrea Gazzola ◽  
Luca Mattioli ◽  
...  

BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Angelica Menchaca ◽  
Natalia A. Rossi ◽  
Jeremy Froidevaux ◽  
Isabela Dias-Freedman ◽  
Anthony Caragiulo ◽  
...  

Abstract Background Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. Results We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE = 0.61, HO = 0.55, and NA = 9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. Conclusions The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.


Sign in / Sign up

Export Citation Format

Share Document