The national surveillance study of grass carp reovirus in China reveals the spatial-temporal characteristics and potential risks

Aquaculture ◽  
2022 ◽  
Vol 547 ◽  
pp. 737449
Author(s):  
Yang Feng ◽  
Cunbin Shi ◽  
Ping Ouyang ◽  
Xiaoli Huang ◽  
Defang Chen ◽  
...  
2010 ◽  
Vol 36 (4) ◽  
pp. 837-842 ◽  
Author(s):  
Sha LIAO ◽  
Yun CHEN ◽  
Fu-Kuan DU ◽  
Ya-Ping WANG ◽  
Lan-Jie LIAO ◽  
...  

2013 ◽  
Vol 20 (2) ◽  
pp. 419-426 ◽  
Author(s):  
Weiwei ZENG ◽  
Qing WANG ◽  
Yingying WANG ◽  
Lesheng ZHANG ◽  
Baoqin LIU ◽  
...  

2013 ◽  
Vol 18 (5) ◽  
pp. 1077-1083 ◽  
Author(s):  
Yongkui LIU ◽  
Qing WANG ◽  
Weiwei ZENG ◽  
Cunbin SHI ◽  
Chao ZHANG ◽  
...  

2013 ◽  
Vol 37 (3) ◽  
pp. 450 ◽  
Author(s):  
Weiwei ZENG ◽  
Qing WANG ◽  
Yingying WANG ◽  
Cunbin SHI ◽  
Shuqin WU

2012 ◽  
Vol 37 (6) ◽  
pp. 659-664 ◽  
Author(s):  
Shi-ying XU ◽  
Jing-hui LI ◽  
Yong ZOU ◽  
Lin LIU ◽  
Cheng-liang GONG ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Changyong Mu ◽  
Qiwang Zhong ◽  
Yan Meng ◽  
Yong Zhou ◽  
Nan Jiang ◽  
...  

The grass carp reovirus (GCRV) causes severe hemorrhagic disease with high mortality and leads to serious economic losses in the grass carp (Ctenopharyngodon idella) industry in China. Oral vaccine has been proven to be an effective method to provide protection against fish viruses. In this study, a recombinant baculovirus BmNPV-VP35-VP4 was generated to express VP35 and VP4 proteins from GCRV type Ⅱ via Bac-to-Bac baculovirus expression system. The expression of recombinant VP35-VP4 protein (rVP35-VP4) in Bombyx mori embryo cells (BmE) and silkworm pupae was confirmed by Western blotting and immunofluorescence assay (IFA) after infection with BmNPV-VP35-VP4. To vaccinate the grass carp by oral route, the silkworm pupae expressing the rVP35-VP4 proteins were converted into a powder after freeze-drying, added to artificial feed at 5% and fed to grass carp (18 ± 1.5 g) for six weeks, and the immune response and protective efficacy in grass carp after oral vaccination trial was thoroughly investigated. This included blood cell counting and classification, serum antibody titer detection, immune-related gene expression and the relative percent survival rate in immunized grass carp. The results of blood cell counts show that the number of white blood cells in the peripheral blood of immunized grass carp increased significantly from 14 to 28 days post-immunization (dpi). The differential leukocyte count of neutrophils and monocytes were significantly higher than those in the control group at 14 dpi. Additionally, the number of lymphocytes increased significantly and reached a peak at 28 dpi. The serum antibody levels were significantly increased at Day 14 and continued until 42 days post-vaccination. The mRNA expression levels of immune-related genes (IFN-1, TLR22, IL-1β, MHC I, Mx and IgM) were significantly upregulated in liver, spleen, kidney and hindgut after immunization. Four weeks post-immunization, fish were challenged with virulent GCRV by intraperitoneal injection. The results of this challenge study show that orally immunized group exhibited a survival rate of 60% and relative percent survival (RPS) of 56%, whereas the control group had a survival rate of 13% and RPS of 4%. Taken together, our results demonstrate that the silkworm pupae powder containing baculovirus-expressed VP35-VP4 proteins could induce both non-specific and specific immune responses and protect grass carp against GCRV infection, suggesting it could be used as an oral vaccine.


2020 ◽  
Vol 11 ◽  
Author(s):  
Long-Feng Lu ◽  
Zhuo-Cong Li ◽  
Can Zhang ◽  
Xiao-Yu Zhou ◽  
Yu Zhou ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 690
Author(s):  
Ke Zhang ◽  
Wenzhi Liu ◽  
Yiqun Li ◽  
Yong Zhou ◽  
Yan Meng ◽  
...  

A new grass carp reovirus (GCRV), healthy grass carp reovirus (HGCRV), was isolated from grass carp in 2019. Its complete genome sequence was determined and contained 11 dsRNAs with a total size of 23,688 bp and 57.2 mol% G+C content, encoding 12 proteins. All segments had conserved 5' and 3' termini. Sequence comparisons showed that HGCRV was closely related to GCRV-873 (GCRV-I; 69.57–96.71% protein sequence identity) but shared only 22.65–45.85% and 23.37–43.39% identities with GCRV-HZ08 and Hubei grass carp disease reovirus (HGDRV), respectively. RNA-dependent RNA-polymerase (RdRp) protein-based phylogenetic analysis showed that HGCRV clustered with Aquareovirus-C (AqRV-C) prior to joining a branch common with other aquareoviruses. Further analysis using VP6 amino acid sequences from Chinese GCRV strains showed that HGCRV was in the same evolutionary cluster as GCRV-I. Thus, HGCRV could be a new GCRV isolate of GCRV-I but is distantly related to other known GCRVs. Grass carp infected with HGCRV did not exhibit signs of hemorrhage. Interestingly, the isolate induced a typical cytopathic effect in fish cell lines, such as infected cell shrank, apoptosis, and plague-like syncytia. Further analysis showed that HGCRV could proliferate in grass carp liver (L28824), gibel carp brain (GiCB), and other fish cell lines, reaching a titer of up to 7.5 × 104 copies/μL.


Sign in / Sign up

Export Citation Format

Share Document