Aquatic ecotoxicity of a pheromonal antagonist in Daphnia magna and Desmodesmus subspicatus

2006 ◽  
Vol 79 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Esmeralda Rosa ◽  
Carlos Barata ◽  
Joana Damásio ◽  
M Pilar Bosch ◽  
Angel Guerrero
2015 ◽  
Vol 66 (4) ◽  
pp. 315-321 ◽  
Author(s):  
Mira Zovko ◽  
Željka Vidaković-Cifrek ◽  
Želimira Cvetković ◽  
Jasna Bošnir ◽  
Sandra Šikić

Acrylamide is a monomer widely used as an intermediate in the production of organic chemicals, e.g. polyacrylamides (PAMs). Since PAMs are low cost chemicals with applications in various industries and waste- and drinking water treatment, a certain amount of non-polymerised acrylamide is expected to end up in waterways. PAMs are non-toxic but acrylamide induces neurotoxic effects in humans and genotoxic, reproductive, and carcinogenic effects in laboratory animals. In order to evaluate the effect of acrylamide on freshwater organisms, bioassays were conducted on four species: algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata, duckweed Lemna minor and water flea Daphnia magna according to ISO (International Organization for Standardisation) standardised methods. This approach ensures the evaluation of acrylamide toxicity on organisms with different levels of organisation and the comparability of results, and it examines the value of using a battery of low-cost standardised bioassays in the monitoring of pollution and contamination of aquatic ecosystems. These results showed that EC50 values were lower for Desmodesmus subspicatus and Pseudokirchneriella subcapitata than for Daphnia magna and Lemna minor, which suggests an increased sensitivity of algae to acrylamide. According to the toxic unit approach, the values estimated by the Lemna minor and Daphnia magna bioassays, classify acrylamide as slightly toxic (TU=0-1; Class 1). The results obtained from algal bioassays (Desmodesmus subspicatus and Pseudokirchneriella subcapitata) revealed the toxic effect of acrylamide (TU=1-10; Class 2) on these organisms.


2021 ◽  
Vol 100 (1) ◽  
pp. 30-35
Author(s):  
Larisa M. Sosedova ◽  
Evgeniy A. Titov ◽  
Mikhail A. Novikov ◽  
Irina A. Shurygina ◽  
Mikhail G. Shurygin

This review contains analysis and generalization of data about aquatic ecotoxicity of metal nanoparticles study. This study showed the effect of their impact on the viability of protozoa, algae, microbial communities. A multi-level approach proves to be important as it considers the main characteristics of the studied materials: solubility, agglomeration, degradation. The transformation in the aquatic environment is important in the study of aquatic ecotoxicity. For assessing the state of environment in ecotoxicological experiments, the Great Daphnia (Daphnia magna) was used as a critical organism of the freshwater ecosystem, due to its high sensitivity to environmental pollution, small body size, and short lifespan. In this regard, numerous studies on the effect of nanoparticles on the state of aquatic ecosystem are carried out on Daphnia magna. The review presents some methodological approaches to test the toxicity of nanoparticles in aquatic environment and assessing their stability. It is proposed to carry out a total assessment of the effect based on the content of pollutants in water with different toxic potentials, given that organisms, including aquatic organisms, are rarely exposed to certain chemicals. A promising approach to the assessment of cytotoxicity is high-throughput screening (HTS), which offers the opportunity to quickly test the effects of nanoparticles on bacteria in parallel in several concentrations. Algae are the most important participants in ecosystem and main components of the food chain. It allows recommending them as a marker when monitoring the environmental pollution by metal nanoparticles. Particular attention is paid to perspectives for further wider use of nanostructured products as adsorbents in wastewater treatment and recultivation processes. Search and selection of sources for review carried out in open databases, including PubMed, Scopus, Google Scholar and RSCI (Russian Science Citation Index) for 2007 - 2018 period.


Author(s):  
Patricia L. Jansma

The presence of the membrane bound vesicles or blebs on the intestinal epithelial cells has been demonstrated in a variety of vertebrates such as chicks, piglets, hamsters, and humans. The only invertebrates shown to have these microvillar blebs are two species of f1ies. While investigating the digestive processes of the freshwater microcrustacean, Daphnia magna, the presence of these microvillar blebs was noticed.Daphnia magna fed in a suspension of axenically grown green alga, Chlamydomonas reinhardii for one hour were narcotized with CO2 saturated water. The intestinal tracts were excised in 2% glutaraldehyde in 0.2 M cacodyl ate buffer and then placed in fresh 2% glutaraldehyde for one hour. After rinsing in 0.1 M cacodylate buffer, the sample was postfixed in 2% OsO4, dehydrated with a graded ethanol series, infiltrated and embedded with Epon-Araldite. Thin sections were stained with uranyl acetate and Reynolds lead citrate before viewing with the Philips EM 200.


Author(s):  
E. R. Macagno ◽  
C. Levinthal

The optic ganglion of Daphnia Magna, a small crustacean that reproduces parthenogenetically contains about three hundred neurons: 110 neurons in the Lamina or anterior region and about 190 neurons in the Medulla or posterior region. The ganglion lies in the midplane of the organism and shows a high degree of left-right symmetry in its structures. The Lamina neurons form the first projection of the visual output from 176 retinula cells in the compound eye. In order to answer questions about structural invariance under constant genetic background, we have begun to reconstruct in detail the morphology and synaptic connectivity of various neurons in this ganglion from electron micrographs of serial sections (1). The ganglion is sectioned in a dorso-ventra1 direction so as to minimize the cross-sectional area photographed in each section. This area is about 60 μm x 120 μm, and hence most of the ganglion fit in a single 70 mm micrograph at the lowest magnification (685x) available on our Zeiss EM9-S.


1981 ◽  
Vol 12 (1) ◽  
pp. 63-79
Author(s):  
R. Cabridenc ◽  
Bui Thi ◽  
H. Lepailleur
Keyword(s):  

2002 ◽  
Vol 38 (4) ◽  
pp. 11
Author(s):  
M. G. Mardarevich ◽  
D. I. Gudkov ◽  
L. S. Kipnis ◽  
V. V. Belyaev

2002 ◽  
Vol 38 (1) ◽  
pp. 11
Author(s):  
A. A. Ratushnyak ◽  
M. G. Andreyeva ◽  
V. Z. Latypova ◽  
L. G. Garipova

Sign in / Sign up

Export Citation Format

Share Document