scholarly journals Multilevel Thresholding Technique for Contrast Enhancement in Thermal Images to Facilitate Accurate Image Segmentation

Author(s):  
M. S. Sangeetha ◽  
N. M. Nandhitha
2017 ◽  
Vol 8 (4) ◽  
pp. 58-83 ◽  
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


2018 ◽  
pp. 771-797
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


2019 ◽  
Vol 10 (3) ◽  
pp. 91-106
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is widely used in brain magnetic resonance (MR) image segmentation. In this article, a multilevel thresholding-based brain MR image segmentation technique is proposed. The image is first filtered using anisotropic diffusion. Then multilevel thresholding based on particle swarm optimization (PSO) is performed on the filtered image to get the final segmented image. Otsu function is used to select the thresholds. The proposed technique is compared with standard PSO and bacterial foraging optimization (BFO) based multilevel thresholding techniques. The objective image quality metrics such as Peak Signal to Noise Ratio (PSNR) and Mean Structural SIMilarity (MSSIM) index are used to evaluate the quality of the segmented images. The experimental results suggest that the proposed technique gives significantly better-quality image segmentation compared to the other techniques when applied to T2-weitghted brain MR images.


2018 ◽  
Vol 9 (4) ◽  
pp. 1-32 ◽  
Author(s):  
Mohamed Abdou Bouteldja ◽  
Mohamed Baadeche ◽  
Mohamed Batouche

This article describes how multilevel thresholding image segmentation is a process used to partition an image into well separated regions. It has various applications such as object recognition, edge detection, and particle counting, etc. However, it is computationally expensive and time consuming. To alleviate these limitations, nature inspired metaheuristics are widely used to reduce the computational complexity of such problem. In this article, three cellular metaheuristics namely cellular genetic algorithm (CGA), cellular particle swarm optimization (CPSO) and cellular differential evolution (CDE) are adapted to solve the multilevel thresholding image segmentation problem. Experiments are conducted on different test images to assess the performance of the cellular algorithms in terms of efficiency, quality and stability based on the between-class variance and Kapur's entropy as objective functions. The experimental results have shown that the proposed cellular algorithms compete with and even outperform existing methods for multilevel thresholding image segmentation.


Sign in / Sign up

Export Citation Format

Share Document