Estimation of differential code biases with Jason-2/3 onboard GPS observations

2021 ◽  
Vol 67 (1) ◽  
pp. 209-222
Author(s):  
Min Li ◽  
Yunbin Yuan ◽  
Baocheng Zhang ◽  
Mingming Liu
2010 ◽  
Vol 53 (4) ◽  
pp. 639-645 ◽  
Author(s):  
Yi-Yi WU ◽  
Zhen-Jie HONG ◽  
Peng GUO ◽  
Jie ZHENG
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
pp. 53-61
Author(s):  
E. Mysen

AbstractA network of pointwise available height anomalies, derived from levelling and GPS observations, can be densified by adjusting a gravimetric quasigeoid using least-squares collocation. The resulting type of Corrector Surface Model (CSM) is applied by Norwegian surveyors to convert ellipsoidal heights to normal heights expressed in the official height system NN2000. In this work, the uncertainty related to the use of a CSM to predict differences in height anomaly was sought. As previously, the application of variograms to determine the local statistical properties of the adopted collocation model led to predictions that were consistent with their computed uncertainties. For the purpose of predicting height anomaly differences, the effect of collocation was seen to be moderate in general for the small spatial separations considered (< 10 km). However, the relative impact of collocation could be appreciable, and increasing with distance, near the network. At last, it was argued that conservative uncertainties of height anomaly differences may be obtained by rescaling output of a grid interpolation by \sqrt \Delta, where Δ is the spatial separation of the two locations for which the difference is sought.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Mani Sivakandan ◽  
Yuichi Otsuka ◽  
Priyanka Ghosh ◽  
Hiroyuki Shinagawa ◽  
Atsuki Shinbori ◽  
...  

AbstractThe total electron content (TEC) data derived from the GAIA (Ground-to-topside model of Atmosphere Ionosphere for Aeronomy) is used to study the seasonal and longitudinal variation of occurrence of medium-scale traveling ionospheric disturbances (MSTIDs) during daytime (09:00–15:00 LT) for the year 2011 at eight locations in northern and southern hemispheres, and the results are compared with ground-based Global Positioning System (GPS)-TEC. To derive TEC variations caused by MSTIDs from the GAIA (GPS) data, we obtained detrended TEC by subtracting 2-h (1-h) running average from the TEC, and calculated standard deviation of the detrended TEC in 2 h (1 h). MSTID activity was defined as a ratio of the standard deviation to the averaged TEC. Both GAIA simulation and GPS observations data show that daytime MSTID activities in the northern and southern hemisphere (NH and SH) are higher in winter than in other seasons. From the GAIA simulation, the amplitude of the meridional wind variations, which could be representative of gravity waves (GWs), shows two peaks in winter and summer. The winter peak in the amplitude of the meridional wind variations coincides with the winter peak of the daytime MSTIDs, indicating that the high GW activity is responsible for the high MSTID activity. On the other hand, the MSTID activity does not increase in summer. This is because the GWs in the thermosphere propagate poleward in summer, and equatorward in winter, and the equatorward-propagating GWs cause large plasma density perturbations compared to the poleward-propagating GWs. Longitudinal variation of daytime MSTID activity in winter is seen in both hemispheres. The MSTID activity during winter in the NH is higher over Japan than USA, and the MSTID activity during winter in the SH is the highest in South America. In a nutshell, GAIA can successfully reproduce the seasonal and longitudinal variation of the daytime MSTIDs. This study confirms that GWs cause the daytime MSTIDs in GAIA and amplitude and propagation direction of the GWs control the noted seasonal variation. GW activities in the middle and lower atmosphere cause the longitudinal variation.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 443
Author(s):  
Ye Wang ◽  
Lin Zhao ◽  
Yang Gao

In the use of global navigation satellite systems (GNSS) to monitor ionosphere variations by estimating total electron content (TEC), differential code biases (DCBs) in GNSS measurements are a primary source of errors. Satellite DCBs are currently estimated and broadcast to users by International GNSS Service (IGS) using a network of GNSS hardware receivers which are inside structure fixed. We propose an approach for satellite DCB estimation using a multi-spacing GNSS software receiver to analyze the influence of the correlator spacing on satellite DCB estimates and estimate satellite DCBs based on different correlator spacing observations from the software receiver. This software receiver-based approach is called multi-spacing DCB (MSDCB) estimation. In the software receiver approach, GNSS observations with different correlator spacings from intermediate frequency datasets can be generated. Since each correlator spacing allows the software receiver to output observations like a local GNSS receiver station, GNSS observations from different correlator spacings constitute a network of GNSS receivers, which makes it possible to use a single software receiver to estimate satellite DCBs. By comparing the MSDCBs to the IGS DCB products, the results show that the proposed correlator spacing flexible software receiver is able to predict satellite DCBs with increased flexibility and cost-effectiveness than the current hardware receiver-based DCB estimation approach.


GPS Solutions ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 313-319 ◽  
Author(s):  
Jiahao Zhong ◽  
Jiuhou Lei ◽  
Xiankang Dou ◽  
Xinan Yue

Sign in / Sign up

Export Citation Format

Share Document