scholarly journals Adhesion effect analysis of ultra-fine lunar dust particles on the aluminum-based rough surface based on the fractal theory

Author(s):  
Haiyan Zhang ◽  
Xiao Wang ◽  
Ji Zhang ◽  
Meng Mu ◽  
Mingzhi Wang ◽  
...  
2013 ◽  
Vol 79 (4) ◽  
pp. 405-411 ◽  
Author(s):  
SERGEY I. POPEL ◽  
LEV M. ZELENYI

AbstractFrom the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to “horizon glow” and “streamers” above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.


1976 ◽  
Vol 31 ◽  
pp. 238-240 ◽  
Author(s):  
John W. Rhee

An investigation has been made to study a possibility that dust particles might catastrophically explode on the lunar surface due to electrostatic charging. It is shown that for the dark side along the terminator zone, dust balls and compact stony particles of micron and submicron sizes will be blown up if their surface potential is as low as a kilovolt negative. This mechanism will not operate on the sunlit side because the potential is only 3.5 ~ 20 volts positive. Some of these fragments may possibly levitate in the vicinity of the terminator.


2011 ◽  
Vol 63 (10) ◽  
pp. 1113-1117
Author(s):  
Masanori Kobayashi ◽  
Hideo Ohashi ◽  
Sho Sasaki ◽  
Hiromi Shibata ◽  
Takeo Iwai ◽  
...  

2020 ◽  
Author(s):  
Chao-Chao Yin ◽  
Hai-Hong Huang ◽  
Dan Zhou ◽  
Zhi-Feng Liu

Abstract Effects of surface texturing on the normal contact stiffness of joint surfaces had been investigated by experiments in many previous researches; however, there are relatively few theoretical models in this regard. The rough surface with surface texturing can be divided into two parts: the textured zone and the remaining zone, and their theoretical models are established respectively in this research. For the textured zone, the texture is modeled theoretically based on the three-dimensional topographic data obtained via a 3D-CCMP1 type laser profilometer from TRIMOS. For the remaining zone, the model of normal contact stiffness is established based on the fractal theory for the surface topography description and elastic-plastic deformation of surface asperities, and the structure function method is used to calculate the fractal dimension of rough surface profiles. In the experiment, the normal contact stiffness of specimens is obtained under different normal loads, and the test results are compared with the theoretical predictions. The result shows that the predictions of proposed theoretical model are in good agreement with the experimental data. For the joint surfaces with Sa>2.69 μm, the normal contact stiffness can be effectively increased through proper surface texturing.


2010 ◽  
Vol 97-101 ◽  
pp. 1248-1252 ◽  
Author(s):  
Jian Meng Huang ◽  
Cheng Hui Gao

A thermo-mechanical coupling model for the rough surface is established. The model considers friction contact between a rigid flat plane and a rough surface based on 3D fractal theory and allows the analysis of the effects of elastic-plastic deformation of rough body and the interplay among asperities. The contact pressure distribution for the static state beneath different loading mode and for the dynamic state in the presence of the frictional heat flux is found. The results show the fluctuation of the average contact pressure during the process of loading is related to the velocity of loading. The synthetical function of multiple factors such as the thermal deformation, the rising temperature, the interaction between asperities makes the complicated relationships among the maximum temperature, the maximum contact pressure and the real contact area.


Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940014 ◽  
Author(s):  
YU LIU ◽  
YANMING ZHU ◽  
YANG WANG ◽  
SHANGBIN CHEN

Pore structure in shale controls the gas storage mechanism and gas transport behaviors. Since nanoscale pores in shale matrix have fractal characteristics, fractal theory can be used to study its structure. In addition, fractal method has its own advantages to investigate nanopores in shale, especially for the heterogeneity and irregularity of nanopores in shale. In this work, fractal features of nanoscale pores and the implication on methane adsorption capacity of shale were investigated by employing low pressure nitrogen adsorption, scanning electron microscopy (SEM), and methane adsorption experiments. Frenkel–Halsey–Hill (FHH) model was also used to calculate the fractal parameters of nanoscale pores in shale. The results showed that nanoscale pores in 12 shale samples have obvious fractal features. All the fractal curves of these shale samples can be divided into two segments, which are cut off by [Formula: see text], and the fractal dimensions of these two segments vary from 2.48 to 2.92 [Formula: see text] and 2.42 to 2.80 [Formula: see text], respectively. Based on SEM images, it is found that self-similarity of organic pore systems in shales refers to two aspects. One is that relatively large-scale and small-scale pores have similar formation properties and types, which are of elliptical shape with rough surface. The other is that some small-scale pores are formed by rough surface of relatively large pores. The results also demonstrate that methane adsorption capacity of shale samples increase with increasing total organic carbon (TOC) contents. This is mainly because organic matter is rich in pores and has relatively large fractal dimension values. Larger fractal dimensions indicate rougher pore surfaces and could form more small-scale organic pores. These organic pores would provide more space for methane adsorption.


2010 ◽  
Vol 154-155 ◽  
pp. 19-22
Author(s):  
Xiu Juan Yang ◽  
Zhi Qian Xu ◽  
Xiang Zhen Yan

In this paper, a quantitative analysis for the micro geometrical characteristic of rough surface profile is researched with the fractal theory. Firstly, the fractal dimensions of profile curves under different surface roughness are obtained by using the vertical section method, and then the theoretical relationship between the surface roughness and the fractal dimension is built. Secondly, according to the surface profile curve composed of many triangle peaks, the angles and heights of them are calculated to study the micro geometrical size. Through their variation laws changing with the fractal parameters, the calculation formulas of their average values related to fractal dimension are obtained by using mathematics regression tools. Finally, combing three theoretical relationships built above, the geometrical characteristic of the rough surface profile can be calculated with the surface roughness and accuracy requirement known.


Sign in / Sign up

Export Citation Format

Share Document