scholarly journals Trajectory clustering of air traffic flows around airports

2019 ◽  
Vol 84 ◽  
pp. 776-781 ◽  
Author(s):  
Xavier Olive ◽  
Jérôme Morio
Author(s):  
Mayara Conde Rocha Murca ◽  
Richard DeLaura ◽  
R John Hansman ◽  
Richard Jordan ◽  
Tom Reynolds ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 59 (1) ◽  
pp. 7
Author(s):  
Samantha J. Corrado ◽  
Tejas G. Puranik ◽  
Oliva J. Pinon ◽  
Dimitri N. Mavris

To support efforts to modernize aviation systems to be safer and more efficient, high-precision trajectory prediction and robust anomaly detection methods are required. The terminal airspace is identified as the most critical airspace for individual flight-level and system-level safety and efficiency. To support successful trajectory prediction and anomaly detection methods within the terminal airspace, accurate identification of air traffic flows is paramount. Typically, air traffic flows are identified utilizing clustering algorithms, where performance relies on the definition of an appropriate distance function. The convergent/divergent nature of flows within the terminal airspace makes the definition of an appropriate distance function challenging. Utilization of the Euclidean distance is standard in aviation literature due to little computational expense and ability to cluster entire trajectories or trajectory segments at once. However, a primary limitation in the utilization of the Euclidean distance is the uneven distribution of distances as aircraft arrive at or depart from the airport, which may result in skewed classification and inadequate identification of air traffic flows. Therefore, a weighted Euclidean distance function is proposed to improve trajectory clustering within the terminal airspace. In this work, various weighting schemes are evaluated, applying the HDBSCAN algorithm to cluster the trajectories. This work demonstrates the promise of utilizing a weighted Euclidean distance function to improve the identification of terminal airspace air traffic flows. In particular, for the selected terminal airspace, if trajectory points closer to the border of the terminal airspace, but not necessarily at the border, are weighted highest, then a more accurate clustering is computed.


Author(s):  
Javier A Pérez-Castán ◽  
Fernando Gómez Comendador ◽  
Álvaro Rodríguez-Sanz ◽  
Rocío Barragán ◽  
Rosa M Arnaldo-Valdés

Continuous climb operation is an operational concept that allows airlines to perform an optimal departing trajectory avoiding air traffic control segregation requirements. This concept implies the design and integration of air traffic flows for the sake of safety performance. This paper designs a new conflict-detection air traffic control tool based on the blocking-area concept, characterises the conflict probability between air traffic flows and assesses the impact of continuous climb operation integration in a terminal manoeuvring area. In this paper, a conflict is set out by the infringement of vertical and longitudinal separation minima and coincides with the probability of air traffic control tool usage. Moreover, this research discusses two different approaches for the conflict-detection air traffic control tool: a static approach considering nominal continuous climb operations and landing trajectories, and a dynamic approach that assesses 105 continuous climb operations and landing trajectories. Finally, the air traffic control tool is implemented using Palma TMA data and proves that out of 11 intersections (between departing and landing routes), solely 4 generate vertical separation infringements. The conflict probability between continuous climb operations and arrivals is less than 10−5. Except for one intersection, that is roughly 10−2, similar to current air traffic control intervention designed levels. Therefore, results conclude the viability of the conflict-detection air traffic control tool and continuous climb operations integration.


2001 ◽  
Vol 52 (12) ◽  
pp. 1338-1349 ◽  
Author(s):  
P Leal de Matos ◽  
B Chen ◽  
R J Ormerod
Keyword(s):  

Author(s):  
Andre Michelin ◽  
Moshe Idan ◽  
Jason Speyer
Keyword(s):  

2011 ◽  
Vol 34 (1) ◽  
pp. 13-28 ◽  
Author(s):  
Andre Michelin ◽  
Moshe Idan ◽  
Jason L. Speyer
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Yang Yang ◽  
Jun Zhang ◽  
Kai-quan Cai

Terminal-area aircraft intent inference (T-AII) is a prerequisite to detect and avoid potential aircraft conflict in the terminal airspace. T-AII challenges the state-of-the-art AII approaches due to the uncertainties of air traffic situation, in particular due to the undefined flight routes and frequent maneuvers. In this paper, a novel T-AII approach is introduced to address the limitations by solving the problem with two steps that are intent modeling and intent inference. In the modeling step, an online trajectory clustering procedure is designed for recognizing the real-time available routes in replacing of the missed plan routes. In the inference step, we then present a probabilistic T-AII approach based on the multiple flight attributes to improve the inference performance in maneuvering scenarios. The proposed approach is validated with real radar trajectory and flight attributes data of 34 days collected from Chengdu terminal area in China. Preliminary results show the efficacy of the presented approach.


1997 ◽  
Vol 50 (3) ◽  
pp. 436-447 ◽  
Author(s):  
P. G. Reich

This paper was first published in Volume 19, p. 88, in 1966. Parts II and III were included in following issues of the Journal. The paper is Crown Copyright and is reproduced with the permission of H.M. Stationery Office. It is followed by comments from Stanley Ratcliffe.The main task of air traffic controllers is to plan traffic flows so that aircraft are allotted sufficient separation to absorb not only systematic differences in speed but also the imperfections of navigation and piloting, which we term flying errors. To this end, they usually work with three separation standards, to be applied in, respectively, the along-track, across-track and vertical dimensions of space. The separation standard for any one dimension is the minimum intended (i.e. planned) separation permitted in that dimension when the intended separations are less than standard in the other two. The problem is to choose standards which are safe enough, but not so large as to lead to unnecessary traffic delays and deviations.


Sign in / Sign up

Export Citation Format

Share Document