Flutter analysis of sandwich plates with functionally graded face sheets in thermal environment

2019 ◽  
Vol 95 ◽  
pp. 105461 ◽  
Author(s):  
Korosh Khorshidi ◽  
Mahdi Karimi
2016 ◽  
Vol 20 (2) ◽  
pp. 191-218 ◽  
Author(s):  
Nguyen Dinh Duc ◽  
Pham Hong Cong

Used the Reddy's higher-order shear deformation plate theory, the nonlinear dynamic analysis and vibration of imperfect functionally graded sandwich plates in thermal environment with piezoelectric actuators (PFGM) on elastic foundations subjected to a combination of electrical, damping loadings and temperature are investigated in this article. One of the salient features of this work is the consideration of temperature on the piezoelectric layer, and the material properties of the PFGM sandwich plates are assumed to be temperature-dependent. The governing equations are established based on the stress function, the Galerkin method, and the Runge–Kutta method. In the numerical results, the effects of geometrical parameters; material properties; imperfections; elastic foundations; electrical, thermal, and damping loads on the vibration and nonlinear dynamic response of the PFGM sandwich plates are discussed. The obtained natural frequencies are verified with the known results in the literature.


Author(s):  
Sanjay Singh Tomar ◽  
Mohammad Talha

This work presents an investigation on the flexural and vibration behavior of imperfection sensitive higher order functionally graded material skew sandwich plates in thermal environment. Material properties have been assumed to be temperature dependent and graded in transverse direction following the power law distribution. Reddy’s higher order shear deformation theory has been used to model displacement field kinematics of skew sandwich plate. Variational principle has been used for deriving the governing equations. Finite element methodology has been adopted to discretize plate domain. Convergence and comparison studies have been performed to demonstrate the reliability of present formulation. Effect of various system parameters such as thickness ratio, volume fraction index, skew angle, imperfection parameter, and boundary conditions on the flexural and vibration response have been investigated.


2012 ◽  
Vol 28 (3) ◽  
pp. 439-452 ◽  
Author(s):  
A. M. Zenkour ◽  
M. Sobhy

AbstractThis paper deals with the static response of simply supported functionally graded material (FGM) viscoelastic sandwich plates subjected to transverse uniform loads. The FG sandwich plates are considered to be resting on Pasternak's elastic foundations. The sandwich plate is assumed to consist of a fully elastic core sandwiched by elastic-viscoelastic FGM layers. Material properties are graded according to a power-law variation from the interfaces to the faces of the plate. The equilibrium equations of the FG sandwich plate are given based on a trigonometric shear deformation plate theory. Using Illyushin's method, the governing equations of the viscoelastic sandwich plate can be solved. Parametric study on the bending analysis of FG sandwich plates is being investigated. These parameters include (i) power-law index, (ii) plate aspect ratio, (iii) side-to-thickness ratio, (iv) loading type, (v) foundation stiffnesses, and (vi) time parameter.


Sign in / Sign up

Export Citation Format

Share Document