Cascade ensemble-RBF-based optimization algorithm for aero-engine transient control schedule design optimization

2021 ◽  
pp. 106779
Author(s):  
Y. Ye ◽  
Z. Wang ◽  
X. Zhang
2021 ◽  
Vol 9 (5) ◽  
pp. 478
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui ◽  
Ping Yang ◽  
Linke Chen

Biomimetic robotic fish systems have attracted huge attention due to the advantages of flexibility and adaptability. They are typically complex systems that involve many disciplines. The design of robotic fish is a multi-objective multidisciplinary design optimization problem. However, the research on the design optimization of robotic fish is rare. In this paper, by combining an efficient multidisciplinary design optimization approach and a novel multi-objective optimization algorithm, a multi-objective multidisciplinary design optimization (MMDO) strategy named IDF-DMOEOA is proposed for the conceptual design of a three-joint robotic fish system. In the proposed IDF-DMOEOA strategy, the individual discipline feasible (IDF) approach is adopted. A novel multi-objective optimization algorithm, disruption-based multi-objective equilibrium optimization algorithm (DMOEOA), is utilized as the optimizer. The proposed MMDO strategy is first applied to the design optimization of the robotic fish system, and the robotic fish system is decomposed into four disciplines: hydrodynamics, propulsion, weight and equilibrium, and energy. The computational fluid dynamics (CFD) method is employed to predict the robotic fish’s hydrodynamics characteristics, and the backpropagation neural network is adopted as the surrogate model to reduce the CFD method’s computational expense. The optimization results indicate that the optimized robotic fish shows better performance than the initial design, proving the proposed IDF-DMOEOA strategy’s effectiveness.


2012 ◽  
Vol 215-216 ◽  
pp. 592-596
Author(s):  
Li Gao ◽  
Rong Rong Wang

In order to deal with complex product design optimization problems with both discrete and continuous variables, mix-variable collaborative design optimization algorithm is put forward based on collaborative optimization, which is an efficient way to solve mix-variable design optimization problems. On the rule of “divide and rule”, the algorithm decouples the problem into some relatively simple subsystems. Then by using collaborative mechanism, the optimal solution is obtained. Finally, the result of a case shows the feasibility and effectiveness of the new algorithm.


Author(s):  
Petter Krus ◽  
Johan Andersson

Design optimization is becoming and increasingly important tool for design. In order to have an impact on the product development process it must permeate all levels of the design in such a way that a holistic view is maintained through all stages of the design. One important area is in the case of optimization based on simulation, which generally requires non-gradient methods and as a consequence direct-search methods is a natural choice. The idea in this paper is to use the design optimization approach in the optimization algorithm itself in order to produce an efficient and robust optimization algorithm. The result is a single performance index to measure the effectiveness of an optimization algorithm, and the COMPLEX-RF optimization algorithm, with optimized parameters.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401982961
Author(s):  
Mengjiang Chai ◽  
Yongliang Yuan ◽  
Wenjuan Zhao

Chain drive is one of the most commonly used mechanical devices in the main equipment transmission system. In the past decade, scholars focused on basic performance research, but ignore its best performance. In this study, due to the large vibration of the chain drive in the transmission system, the vibration performance and optimization parameters are also considered as a new method to design the chain drive system to obtain the best performance of the chain drive system. This article proposes a new method and takes a chain drive design as a case based on the multidisciplinary design optimization. The system optimization objective and sub-systems are established by the multidisciplinary design optimization method. To obtain the best performance for the chain, the chain drive is executed by an improved particle swarm optimization algorithm. Dynamic characteristics of the chain drive system are simulated based on the multidisciplinary design optimization results. The impact force of the chain links, vibration displacement, and the vibration frequency are analyzed. The results show that the kinematics principle of the chain drive and the optimal parameter value are obtained based on the multidisciplinary design optimization method.


Sign in / Sign up

Export Citation Format

Share Document