Cross-flow transition model predictions of hypersonic transition research vehicle

2022 ◽  
pp. 107327
Author(s):  
Xing-hao Xiang ◽  
Jian-qiang Chen ◽  
Xian-xu Yuan ◽  
Bing-bing Wan ◽  
Yu Zhuang ◽  
...  
Author(s):  
Florian Herbst ◽  
Andreas Fiala ◽  
Joerg R. Seume

The current design of low-pressure turbines (LPTs) with steady-blowing vortex generating jets (VGJ) uses steady computational fluid dynamics (CFD). The present work aims to support this design approach by proposing a new semi-empirical transition model for injection-induced laminar-turbulent boundary layer transition. It is based on the detection of cross-flow vortices in the boundary layer which cause inflectional cross-flow velocity profiles. The model is implemented in the CFD code TRACE within the framework of the γ-Reθ transition model and is a reformulated, re-calibrated, and extended version of a previously presented model. It is extensively validated by means of VGJ as well as non-VGJ test cases capturing the local transition process in a physically reasonable way. Quantitative aerodynamic design parameters of several VGJ configurations including steady and periodic-unsteady inflow conditions are predicted in good accordance with experimental values. Furthermore, the quantitative prediction of end-wall flows of LPTs is improved by detecting typical secondary flow structures. For the first time, the newly derived model allows the quantitative design and optimization of LPTs with VGJs.


1988 ◽  
Vol 54 (500) ◽  
pp. 953-958
Author(s):  
Masahiro OSAKABE ◽  
Yuji KAWASAKI ◽  
Kanji TASAKA

2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Florian Herbst ◽  
Andreas Fiala ◽  
Joerg R. Seume

The current design of low-pressure turbines (LPTs) with steady-blowing vortex generating jets (VGJs) uses steady computational fluid dynamics (CFD). The present work aims to support this design approach by proposing a new semiempirical transition model for injection-induced laminar-turbulent boundary layer transition. It is based on the detection of cross-flow vortices in the boundary layer which cause inflectional cross-flow velocity profiles. The model is implemented in the CFD code TRACE within the framework of the γ-Reθ transition model and is a reformulated, recalibrated, and extended version of a previously presented model. It is extensively validated by means of VGJ as well as non-VGJ test cases capturing the local transition process in a physically reasonable way. Quantitative aerodynamic design parameters of several VGJ configurations including steady and periodic-unsteady inflow conditions are predicted in good accordance with experimental values. Furthermore, the quantitative prediction of end-wall flows of LPTs is improved by detecting typical secondary flow structures. For the first time, the newly derived model allows the quantitative design and optimization of LPTs with VGJs.


2004 ◽  
Vol 127 (3) ◽  
pp. 497-501
Author(s):  
John A. Redford ◽  
Mark W. Johnson

This paper describes the modifications made to a successful attached flow transition model to produce a model capable of predicting both attached and separated flow transition. This transition model is used in combination with the Fluent CFD software, which is used to compute the flow around the blade assuming that it remains entirely laminar. The transition model then determines the start of transition location and the development of the intermittency. These intermittency values weight the laminar and turbulent boundary layer profiles to obtain the resulting transitional boundary layer parameters. The ERCOFTAC T3L test cases are used to validate the predictions. The T3L blade is a flat plate with a semi-circular leading edge, which results in the formation of a separation bubble the length of which is strongly dependent on the transition process. Predictions were performed for five T3L test cases for differing free-stream turbulence levels and Reynolds numbers. For the majority of these test cases the measurements were accurately predicted.


Author(s):  
John A. Redford ◽  
Mark W. Johnson

This paper describes the modifications made to a successful attached flow transition model to produce a model capable of predicting both attached and separated flow transition. This transition model is used in combination with the Fluent CFD software, which is used to compute the flow around the blade assuming that it remains entirely laminar. The transition model then determines the start of transition location and the development of the intermittency. These intermittency values weight the laminar and turbulent boundary layer profiles to obtain the resulting transitional boundary layer parameters. The ERCOFTAC T3L test cases are used to validate the predictions. The T3L blade is a flat plate with a semi-circular leading edge, which results in the formation of a separation bubble the length of which is strongly dependent on the transition process. Predictions were performed for five T3L test cases for differing freestream turbulence levels and Reynolds numbers. For the majority of these test cases the measurements were accurately predicted.


2021 ◽  
Author(s):  
Chunfei FANG ◽  
Jinglei Xu

Abstract Wall roughness significantly influences both laminar-turbulent transition process and fully developed turbulence. This work has developed a wall roughness extension for the KDO turbulence/transition model. The roughness effect is introduced via the modification of the k and νt boundary conditions, i.e., the wall is considered to be raised at an extra height. The equivalent roughness height is linked to the actual roughness height, and the ratio between them is determined by reasoning. With such a roughness extension, the predictions of the KDO RANS model agree well with the measurements of turbulent boundary layer with a sand grain surface, while the KDO transition model yields accurate cross-flow transition predictions of flow past a 6:1 spheroid.


2014 ◽  
Vol 7 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Cecily L. Betz ◽  
Maria E. Ferris ◽  
Jason F. Woodward ◽  
Megumi J. Okumura ◽  
Sophia Jan ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 76-103 ◽  
Author(s):  
Ellen R. McGrattan ◽  
Andrea Waddle

Using simulations from a multi-country neoclassical growth model, we analyze several post-Brexit scenarios. First, the United Kingdom unilaterally imposes tighter restrictions on FDI and trade from other EU nations. Second, the European Uunion retaliates and imposes the same restrictions on the United Kingdom. Finally, the United Kingdom reduces restrictions on other nations during the post-Brexit transition. Model predictions depend crucially on the policy response of multinationals’ investment in technology capital, accumulated know-how from investments in R&D, brands, and organizations used simultaneously in their domestic and foreign operations. (JEL D25, F13, F15, F23, G31, O32)


Sign in / Sign up

Export Citation Format

Share Document