Predicting Transitional Separation Bubbles

2004 ◽  
Vol 127 (3) ◽  
pp. 497-501
Author(s):  
John A. Redford ◽  
Mark W. Johnson

This paper describes the modifications made to a successful attached flow transition model to produce a model capable of predicting both attached and separated flow transition. This transition model is used in combination with the Fluent CFD software, which is used to compute the flow around the blade assuming that it remains entirely laminar. The transition model then determines the start of transition location and the development of the intermittency. These intermittency values weight the laminar and turbulent boundary layer profiles to obtain the resulting transitional boundary layer parameters. The ERCOFTAC T3L test cases are used to validate the predictions. The T3L blade is a flat plate with a semi-circular leading edge, which results in the formation of a separation bubble the length of which is strongly dependent on the transition process. Predictions were performed for five T3L test cases for differing free-stream turbulence levels and Reynolds numbers. For the majority of these test cases the measurements were accurately predicted.

Author(s):  
John A. Redford ◽  
Mark W. Johnson

This paper describes the modifications made to a successful attached flow transition model to produce a model capable of predicting both attached and separated flow transition. This transition model is used in combination with the Fluent CFD software, which is used to compute the flow around the blade assuming that it remains entirely laminar. The transition model then determines the start of transition location and the development of the intermittency. These intermittency values weight the laminar and turbulent boundary layer profiles to obtain the resulting transitional boundary layer parameters. The ERCOFTAC T3L test cases are used to validate the predictions. The T3L blade is a flat plate with a semi-circular leading edge, which results in the formation of a separation bubble the length of which is strongly dependent on the transition process. Predictions were performed for five T3L test cases for differing freestream turbulence levels and Reynolds numbers. For the majority of these test cases the measurements were accurately predicted.


2005 ◽  
Vol 127 (3) ◽  
pp. 449-457 ◽  
Author(s):  
S. K. Roberts ◽  
M. I. Yaras

This paper presents experimental results documenting the effects of surface roughness and free-stream turbulence on boundary-layer transition. The experiments were conducted on a flat surface, upon which a pressure distribution similar to those prevailing on the suction side of low-pressure turbine blades was imposed. The test matrix consists of five variations in the roughness conditions, at each of three free-stream turbulence intensities (approximately 0.5%, 2.5%, and 4.5%), and two flow Reynolds numbers of 350,000 and 470,000. The ranges of these parameters considered in the study, which are typical of low-pressure turbines, resulted in both attached-flow and separation-bubble transition. The focus of the paper is on separation-bubble transition, but the few attached-flow test cases that occurred under high roughness and free-stream turbulence conditions are also presented for completeness of the test matrix. Based on the experimental results, the effects of surface roughness on the location of transition onset and the rate of transition are quantified, and the sensitivity of these effects to free-stream turbulence is established. The Tollmien–Schlichting instability mechanism is shown to be responsible for transition in each of the test cases presented. The root-mean-square height of the surface roughness elements, their planform size and spacing, and the skewness (bias towards depression or protrusion roughness) of the roughness distribution are shown to be relevant to quantifying the effects of roughness on the transition process.


2011 ◽  
Vol 681 ◽  
pp. 370-410 ◽  
Author(s):  
JOHN D. COULL ◽  
HOWARD P. HODSON

This paper examines the transition process in a boundary layer similar to that present over the suction surfaces of aero-engine low-pressure (LP) turbine blades. This transition process is of significant practical interest since the behaviour of this boundary layer largely determines the overall efficiency of the LP turbine. Modern ‘high-lift’ blade designs typically feature a closed laminar separation bubble on the aft portion of the suction surface. The size of this bubble and hence the inefficiency it generates is controlled by the transition between laminar and turbulent flow in the boundary layer and separated shear layer. The transition process is complicated by the inherent unsteadiness of the multi-stage machine: the wakes shed by one blade row convect through the downstream blade passages, periodically disturbing the boundary layers. As a consequence, the transition to turbulence is multi-modal by nature, being promoted by periodic and turbulent fluctuations in the free stream and the inherent instabilities of the boundary layer. Despite many studies examining the flow behaviour, the detailed physics of the unsteady transition phenomena are not yet fully understood. The boundary-layer transition process has been studied experimentally on a flat plate. The opposing test-section wall was curved to impose a streamwise pressure distribution typical of modern high-lift LP turbines over the flat plate. The presence of an upstream blade row has been simulated by a set of moving bars, which shed wakes across the test section inlet. Further upstream, a grid has been installed to elevate the free-stream turbulence to a level believed to be representative of multi-stage LP turbines. Extensive particle imaging velocimetry (PIV) measurements have been performed on the flat-plate boundary layer to examine the flow behaviour. In the absence of the incoming bar wakes, the grid-generated free-stream turbulence induces relatively weak Klebanoff streaks in the boundary layer which are evident as streamwise streaks of low-velocity fluid. Transition is promoted by the streaks and by the inherent inflectional (Kelvin–Helmholtz (KH)) instability of the separation bubble. In unsteady flow, the incoming bar wakes generate stronger Klebanoff streaks as they pass over the leading edge, which convect downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The region of amplified streaks convects in a similar manner to a classical turbulent spot: the leading and trailing edges travel at around 88% and 50% of the free-stream velocity, respectively. The strongest disturbances travel at around 70% of the free-stream velocity. The wakes induce a second type of disturbance as they pass over the separation bubble, in the form of short-span KH structures. Both the streaks and the KH structures contribute to the early wake-induced transition. The KH structures are similar to those observed in the simulation of separated flow transition with high free-stream turbulence by McAuliffe & Yaras (ASME J. Turbomach., vol. 132, no. 1, 2010, 011004), who observed that these structures originated from localised instabilities of the shear layer induced by Klebanoff streaks. In the current measurements, KH structures are frequently observed directly under the path of the wake. The wake-amplified Klebanoff streaks cannot affect the generation of these structures since they do not arrive at the bubble until later in the wake cycle. Rather, the KH structures arise from an interaction between the flow disturbances in the wake and localised instabilities in the shear layer, which are caused by the weak Klebanoff streaks induced by the grid turbulence. The breakdown of the KH structures to small-scale turbulence occurs a short time after the wake has passed over the bubble, and is largely driven by the arrival of the wake-amplified Klebanoff streaks from the leading edge. During this process, the re-attachment location moves rapidly upstream. The minimum length of the bubble occurs when the strongest wake-amplified Klebanoff streaks arrive from the leading edge; these structures travel at around 70% of the free-stream velocity. The bubble remains shorter than its steady-flow length until the trailing edge of the wake-amplified Klebanoff streaks, travelling at 50% of the free-stream velocity, convect past. After this time, the reattachment location moves aft on the surface as a consequence of a calmed flow region which follows behind the wake-induced turbulence.


Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


1998 ◽  
Vol 374 ◽  
pp. 91-116 ◽  
Author(s):  
IAN P. CASTRO ◽  
ELEANORA EPIK

Measurements obtained in boundary layers developing downstream of the highly turbulent, separated flow generated at the leading edge of a blunt flat plate are presented. Two cases are considered: first, when there is only very low (wind tunnel) turbulence present in the free-stream flow and, second, when roughly isotropic, homogeneous turbulence is introduced. With conditions adjusted to ensure that the separated region was of the same length in both cases, the flow around reattachment was significantly different and subsequent differences in the development rate of the two boundary layers are identified. The paper complements, but is much more extensive than, the earlier presentation of some of the basic data (Castro & Epik 1996), confirming not only that the development process is very slow, but also that it is non-monotonic. Turbulence stress levels fall below those typical of zero-pressure-gradient boundary layers and, in many ways, the boundary layer has features similar to those found in standard boundary layers perturbed by free-stream turbulence. It is argued that, at least as far as the turbulence structure is concerned, the inner layer region develops no more quickly than does the outer flow and it is the latter which essentially determines the overall rate of development of the whole flow. Some numerical computations are used to assess the extent to which current turbulence models are adequate for such flows.


Author(s):  
Debasish Biswas ◽  
Tomohiko Jimbo

Boundary layer transition is an important phenomenon experienced by the flow through gas turbine engines. A substantial fraction of the boundary layer on both sides of a gas turbine airfoil may be transitional. The extended transition zone exist due to strong favorable pressure gradients, found on both near the leading edge portion of the suction side and the pressure side, which serve to stabilize the boundary layer and consequently delay the transition process, even under high free-stream turbulence intensity (FSTI) in practical gas turbine. It is very important to properly model and predict the high FSTI transition mechanism, since boundary layer transition leads to substantial increase in friction coefficients and heat transfer rate. Near wall turbulence production is thought to be largely absent in the non-turbulent zone. The intermittent nature of transition need to be taken into account in developing improved transition model. Much has been learned from the to date, but the nature of separated flow transition is still not completely clear, and existing models are still not robust as needed for accurate prediction. Therefore, in the present work a high order LES turbulent model proposed by the author is used to predict the separated flow transition. The experimental data of Volino is chosen for this comparison purpose. In his experimental work, the flow through a single-passage cascade simulator is documented under both high and low FSTI conditions at several different Reynolds numbers. The geometry of the passage (in Volino’s work) corresponds to that of the “Pak-B” airfoil, which is an industry supplied research airfoil that is representative of a modern, aggressive LP turbine design. Volino’s data included a complete documentation of cases with Re as low as 25,000 and also the documentation of turbulent shear stress in the boundary layer under both high and low FSTI.


Author(s):  
Adam D. Beevers ◽  
Joao Amaral-Teixeira ◽  
Roger Wells

Wake induced transition is simulated at mid-span on a C4 stator blade in a 1.5 stage low speed axial compressor using the CFX γ – θ transition model. IGV and rotor wake inputs were created from a succession of Fourier series produced from experimental data. The purpose of the study was to understand the effectiveness of the γ – θ model implemented in a commercial code to predict the unsteady effects of wake induced transition. The γ – θ transition model was found to predict wake-induced transition and the subsequent calmed region caused by the passing wakes. The wake velocity defect creates conditions within the boundary layer such that the high disturbance energy, which is diffused into the boundary layer at the leading edge from the wake, initiates the transition process. This high disturbance energy travels through the boundary layer directly behind the wake.


1995 ◽  
Author(s):  
Anestis I. Kalfas ◽  
Robin L. Elder

This paper considers the effects of free stream turbulence intensity on intermittent boundary layer flows related to turbomachinery. The present experimental investigation has been undertaken under free stream flow conditions dominated by grid generated turbulence and Reynolds numbers appropriate for turbomachinery applications. Unseparated flow transition in the boundary layer has been considered using a flat plate with the C4 leading edge which has been designed to avoid laminar separation. This configuration provided the opportunity to study the effect of a realistic turbomachinery leading edge shape on transition. Boundary layer type hot-wire probes have been used in order to acquire detailed information about the effect of the free stream conditions and the leading edge configuration on the structure of the boundary layer. Furthermore, information about the intermittency distribution throughout the boundary layer has been obtained using statistical analysis of the velocity record of the flow field.


Author(s):  
S. K. Roberts ◽  
M. I. Yaras

This paper presents measurements of the combined effects of free-stream turbulence and periodic streamwise velocity variations on separation-bubble transition. The measurements were performed on a flat plate at two values of flow Reynolds number, with a streamwise pressure distribution similar to those encountered on the suction side of axial turbine blades. The experiment was designed to facilitate independent control of turbulence and periodic velocity fluctuations in the free-stream. The free-stream turbulence intensity was varied from 0.4% to 4.5%, and the periodic unsteadiness corresponded to Strouhal numbers of 0.0, 2.4 and 4.0. Based on the results, the relative importance of free-stream turbulence and periodic unsteadiness on the streamwise locations of separation, transition and reattachment points are quantified. Existing mathematical models for predicting separated-flow transition and reattachment are then evaluated in this context.


Author(s):  
J. Vicedo ◽  
S. Vilmin ◽  
W. N. Dawes ◽  
A. M. Savill

An intermittency transport model is proposed for modeling separated-flow transition. The model is based on earlier work on prediction of attached flow bypass transition and is applied for the first time to model transition in a separation bubble at various degrees of free-stream turbulence. The model has been developed so that it takes into account the entrainment of the surrounding fluid. Experimental investigations suggest that it is this phenomena which ultimately determines the extent of the separation bubble. Transition onset is determined via a boundary layer correlation based on momentum thickness at the point of separation. The intermittent flow characteristic of the transition process is modeled via an intermittency transport equation. This accounts for both normal and streamwise variation of intermittency and hence models the entrainment of surrounding flow in a more accurate manner than alternative prescribed intermittency models. The model has been validated against the well established T3L semicircular leading edge flat plate test case for three different degrees of free-stream turbulence characteristic of turbomachinery blade applications.


Sign in / Sign up

Export Citation Format

Share Document