Validation of Virtual Imaging of a Dynamic, Functioning Aortic Valve Using an Ex-vivo Porcine Heart

Author(s):  
Kenichi Kamiya ◽  
Yukihiro Nagatani ◽  
Shinya Terada ◽  
Yuji Matsubayashi ◽  
Naoshi Minamidate ◽  
...  
Author(s):  
Matjaz Bunc ◽  
Miha Cercek ◽  
Tomaz Podlesnikar ◽  
Simon Terseglav ◽  
Klemen Steblovnik

Abstract Background Failure of a small surgical aortic bioprosthesis represents a challenging clinical scenario with valve-in-valve (ViV) transcatheter aortic valve implantation (TAVI) often resulting in patient-prosthesis mismatch. Bioprosthetic valve fracture (BVF) performed as a part of the ViV TAVI has recently emerged as an alternative approach with certain types of surgical bioprostheses. Case summary An 81-year-old woman with a history of three surgical aortic valve procedures presented with heart failure. Aortic bioprosthesis degeneration with severe stenosis and moderate regurgitation was found. The patient was deemed a high-risk surgical candidate and the heart team decided that ViV TAVI was the preferred treatment option. Due to the very small 19 mm stented surgical aortic bioprosthesis Mitroflow 19 mm (Sorin Group, Italy) we decided to perform BVF as a part of ViV TAVI to prevent patient-prosthesis mismatch. Since this was the first BVF procedure in our centre, an ex vivo BVF of the same kind of bioprosthetic valve was performed first. Subsequently, successful BVF with implantation of Evolut R 23 mm (Medtronic, USA) self-expandable transcatheter valve was performed. Excellent haemodynamic result was achieved and no periprocedural complications were present. The patient had an immediate major improvement in clinical status and remains asymptomatic after 6 months. Discussion Bioprosthetic valve fracture together with ViV TAVI is a safe and effective emerging technique for treatment of small surgical aortic bioprosthesis failure. Bioprosthetic valve fracture allows marked oversizing of implanted self-expandable transcatheter aortic valves, leading to excellent haemodynamic and clinical results. An ex vivo BVF can serve as an important preparatory step when introducing the new method.


2021 ◽  

Replacements for diseased aortic valves are limited. Repair of the aortic valve is performed by only a few surgeons. A novel technique of aortic valve reconstruction using autologous pericardium shows promising results. In this video tutorial, we demonstrate the Ozaki procedure using an ex vivo low fidelity simulation.


2017 ◽  
Vol 11 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Gert Jan Pelgrim ◽  
Taylor M. Duguay ◽  
J. Marco A. Stijnen ◽  
Akos Varga-Szemes ◽  
Sjoerd Van Tuijl ◽  
...  

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Ling Sun ◽  
John LeCluyse ◽  
Brian Robillard ◽  
Philippe Sucosky

INTRODUCTION: Calcific aortic valve disease (CAVD) is an active process presumably triggered by interplays between atherogenic risk factors, molecular signaling networks and hemodynamic cues. While our earlier work demonstrated that progressive alterations in fluid wall-shear stress (WSS) on the fibrosa could trigger leaflet inflammation, the mechanisms of CAVD pathogenesis secondary to side-specific WSS abnormalities are poorly understood. HYPOTHESIS: Supported by our previous studies, we hypothesize that valve leaflets are sensitive to both WSS magnitude and pulsatility and that abnormalities in either promote CAVD development. OBJECTIVE: This study aims at elucidating ex vivo the contribution of isolated and combined alterations in WSS magnitude and pulsatility to valvular calcification. METHODS: The fibrosa and ventricularis of porcine leaflets were subjected simultaneously to different combinations of WSS magnitude and pulsatility (i.e., physiologic, sub- and supra-physiologic levels) for 48 hours in a double-sided shear stress bioreactor. Endothelial activation (ICAM-1, VCAM-1), paracrine expression (TGF-β and BMP-4), and proteinase/collagenase expression (MMP-2, cathepsin L) were detected by immunohistochemistry, while osteogenic differentiation (α-SMA) was assessed via western blot. RESULTS: Regardless of the magnitude or frequency, non-physiologic WSS conditions did not result in endothelial activation. Tissue exposure to either supra-physiologic WSS magnitude or pulsatility significantly upregulated paracrine (74-fold increase), proteinase (4-fold increase), collagenase (5-fold increase) and α-SMA (23-fold increase) expressions relative to the levels measured under physiologic WSS. In contrast, combined alterations in WSS magnitude and pulsatility downregulated those responses. CONCLUSION: This study demonstrates the sensitivity of aortic valve leaflets to both WSS magnitude and pulsatility and the ability of supra-physiologic WSS magnitude or pulsatility to trigger events involved in early CAVD pathogenesis. The results provide new potential insights into the mechanisms of CAVD secondary to hypertension and Paget’s disease, which are associated with abnormal blood flow and leaflet WSS.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
D Maselli ◽  
R D Johnson ◽  
R Szilveszter Matos ◽  
C Chiappini ◽  
P Camelliti ◽  
...  

Abstract Background The epicardium, the most external layer of the heart, is composed of a layer of epithelial cells and underlying connective tissue. Following myocardial infarction, epicardial cells are activated and provide a source of paracrine factors and progenitor cells. In the border zone of the ischaemic tissue, the activated epicardial cells support cardiac and vascular regeneration by releasing pro-angiogenic and pro-survival factors, and by differentiating towards multiple cell lineages. During this process, activated epicardial cells migrate to the site of injury where they contribute to both post-ischemic remodelling and fibrosis. There is limited knowledge of the cellular and molecular regulation of these processes in large animals and humans, in part due to the lack of robust and representative models. Purpose In this project, we developed an ex vivo 3D organotypic model derived from porcine hearts, amenable to culture, which enables structural, molecular and cellular studies of the epicardium. Methods Thin epicardial/cardiac tissue slices (EpCardio-TS) were obtained by using a vibratome to cut the first layer of tissue from the epicardial side of porcine heart cubes. Slices were cultured for up to 72h in a bioreactor that uses a 3D printed chamber connected to a control system that allows maintenance and adjustment of culture conditions, and ensures continuous media flow. Local intracellular delivery of fluorescent quantum-dots (Qdots) was performed using nanoneedle chips to track epicardial cells, whilst cell fate is visualised in 3D by performing immunofluorescence on decolourised slices. Results Intact EpCardio-TS obtained from porcine heart included a viable epicardium, expressing typical epicardial markers (wt-1, mesothelin, uroplakin), and an electrically active myocardium. Live/dead staining showed epicardial (67.8±16.2%, N=5) and myocardial (40.8±28.6%, N=3) viability, and TUNEL assay confirmed low levels of apoptosis (6.3±5.1% of wt-1+ epicardial cells N=1). Moreover, the presence of proliferating epicardial cells (PCNA+), the increase in wt-1+ cells, and the increase in epicardial gene expression (Tbx18 and TCF21) suggested that cells maintain their progenitor phenotype and undergo activation in culture. Nanoinjection of fluorescent Qdots to EpCardio-TS localized them to the wt-1+ cells on the slice surface, presenting a strategy to mark the epicardial layer. This, combined with the successful decolourisation of the slices, provides an in vitro platform to track the role of epicardial cells in cardiac remodelling and fibrosis. Conclusions EpCardio-TS represents a robust ex vivo model merging the complexity of a 3D organotypic culture with the simplicity of the in vitro culture. EpCardio-TS are amenable to culture and cell tracking, and can therefore find application in toxicology and gene therapy screening for the modulation of epicardial interactions with myocardial and non-myocardial cells of the heart.


2019 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Guillermo Solache-Berrocal ◽  
Ana María Barral-Varela ◽  
Sheila Areces-Rodríguez ◽  
Alejandro Junco-Vicente ◽  
Aitana Vallina-Álvarez ◽  
...  

Aortic valve stenosis is a serious disease with increasing prevalence in developed countries. Research aimed at uncovering the molecular mechanisms behind its main cause, aortic valve calcification, is thus crucial for the development of future therapies. It is frequently difficult to measure the extent of mineralisation in soft tissues and some methods require the destruction of the sample. Micro-computed tomography (µCT), a non-destructive technique, was used to quantify the density and volume of calcium deposits on cusps from 57 explanted aortic valves. Conventional and immunostaining techniques were used to characterise valve tissue degeneration and the inflammatory and osteogenic stage with several markers. Although most of the analysed cusps came from severe stenosis patients, the µCT parameter bone volume/tissue volume ratio distinguished several degrees of mineralisation that correlated with the degree of structural change in the tissue and the amount of macrophage infiltration as determined by CD68 immunohistochemistry. Interestingly, exosomal markers CD63 and Alix co-localised with macrophage infiltration surrounding calcium deposits, suggesting that those vesicles could be produced at least in part by these immune cells. In conclusion, we have shown that the ex vivo assessment of aortic valve mineralisation with µCT reflects the molecular and cellular changes in pathological valves during progression towards stenosis. Thus, our results give additional validity to quantitative μCT as a convenient laboratory tool for basic research on this type of cardiovascular calcification.


2020 ◽  
Vol 13 (6) ◽  
pp. 965-969
Author(s):  
Shu-Tao Huang ◽  
Jian-Zeng Dong ◽  
Xin Du ◽  
Jia-Hui Wu ◽  
Rong-Hui Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document