Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment

2011 ◽  
Vol 45 (4) ◽  
pp. 848-855 ◽  
Author(s):  
Andrew P. Rutter ◽  
James J. Schauer ◽  
Martin M. Shafer ◽  
Joel E. Creswell ◽  
Michael R. Olson ◽  
...  
2012 ◽  
Vol 12 (22) ◽  
pp. 10899-10909 ◽  
Author(s):  
D. M. Feddersen ◽  
R. Talbot ◽  
H. Mao ◽  
B. C. Sive

Abstract. A study was conducted to determine the size distribution of particulate mercury (HgP) at a marine and coastal site, and to compare the seasonal variability at both sites. Data was collected during summer 2009 and 2010, winter 2010, and spring 2010. Two cascade impactors were used to collect HgP in ten size fractions ranging from > 10 μm to < 0.4 μm. During summer 2009, HgP was found mainly (50–60%) in coarse fractions, 1.1 to 5.8 μm, composed of sea salt particles at both our coastal site (Thompson Farm) and marine site (Appledore Island). In winter, HgP at Thompson Farm was dominated (65%) by fine particles, while in spring and summer 2010, at both sites, HgP was distributed across the coarse and fine fractions (40% each). Using bulk filters to collect total HgP, we show a diurnal cycle that matches that of gaseous elemental mercury. Finally, dry deposition rates of HgP were calculated to be 1.7–2.8 ng m−2 day−1 in the summer, 4.6 ng m−2 day−1 in the winter, and 2.5 ng m−2 day−1 in the spring.


2012 ◽  
Vol 12 (9) ◽  
pp. 4327-4340 ◽  
Author(s):  
L. Zhang ◽  
P. Blanchard ◽  
D. A. Gay ◽  
E. M. Prestbo ◽  
M. R. Risch ◽  
...  

Abstract. Dry deposition of speciated mercury, i.e., gaseous oxidized mercury (GOM), particulate-bound mercury (PBM), and gaseous elemental mercury (GEM), was estimated for the year 2008–2009 at 19 monitoring locations in eastern and central North America. Dry deposition estimates were obtained by combining monitored two- to four-hourly speciated ambient concentrations with modeled hourly dry deposition velocities (Vd) calculated using forecasted meteorology. Annual dry deposition of GOM+PBM was estimated to be in the range of 0.4 to 8.1 μg m−2 at these locations with GOM deposition being mostly five to ten times higher than PBM deposition, due to their different modeled Vd values. Net annual GEM dry deposition was estimated to be in the range of 5 to 26 μg m−2 at 18 sites and 33 μg m−2 at one site. The estimated dry deposition agrees very well with limited surrogate-surface dry deposition measurements of GOM and PBM, and also agrees with litterfall mercury measurements conducted at multiple locations in eastern and central North America. This study suggests that GEM contributes much more than GOM+PBM to the total dry deposition at the majority of the sites considered here; the only exception is at locations close to significant point sources where GEM and GOM+PBM contribute equally to the total dry deposition. The relative magnitude of the speciated dry deposition and their good comparisons with litterfall deposition suggest that mercury in litterfall originates primarily from GEM, which is consistent with the limited number of previous field studies. The study also supports previous analyses suggesting that total dry deposition of mercury is equal to, if not more important than, wet deposition of mercury on a regional scale in eastern North America.


2012 ◽  
Vol 12 (6) ◽  
pp. 14591-14621 ◽  
Author(s):  
D. M. Feddersen ◽  
R. Talbot ◽  
H. Mao ◽  
B. C. Sive

Abstract. A study was conducted to determine the size distribution of particulate mercury (HgP) at a marine and coastal site, and compare the seasonality at both sites. Data was collected during summer 2009 and 2010, winter 2010, and spring 2010. Two cascade impactors were used to collect HgP in ten size fractions ranging from >10 μm to <0.4 μm. During summer 2009, HgP was found mainly (50–60%) in coarse fractions, 1.1 to 5.8 μm, composed of sea salt particles at both our coastal site (Thompson Farm) and marine site (Appledore Island). In winter, HgP at Thompson Farm was dominated (65%) by fine particles, while in spring and summer 2010, at both sites, HgP was distributed across the coarse and fine fractions (40% each). Using bulk filters to collect total HgP during each campaign, we show a diurnal cycle that matches that of gaseous elemental mercury. Finally, dry deposition rates of HgP were calculated to be 1.7–2.8 ng m−2 day−1 in the summer, 4.6 ng m−2 day−1 in the winter, and 2.5 ng m−2 day−1 in the spring.


2019 ◽  
Author(s):  
Lei Zhang ◽  
Peisheng Zhou ◽  
Shuzhen Cao ◽  
Yu Zhao

Abstract. One of the most important processes in the global mercury biogeochemical cycling is the deposition of atmospheric mercury, including gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM), to terrestrial surfaces. In this paper, methods for the observation of wet, dry, litterfall, throughfall, and cloud/fog deposition and models for mercury dry deposition are reviewed. Surrogate surface methods with cation exchange membranes are widely used for GOM dry deposition measurements, while observation methods for GEM dry deposition are more diverse. The methodology for Hg wet deposition is more mature, but the influence of cloud/fog scavenging is easy to neglect. Dry deposition models for speciated mercury have high uncertainties owing to the presence of sensitive parameters related to GOM chemical forms. Observation networks for mercury wet deposition have been developed worldwide, with the Global Mercury Observation System (GMOS) covering the northern hemisphere, the tropics, and the southern hemisphere. Wet deposition implies the spatial distribution of atmospheric mercury pollution, while GOM dry deposition depends highly on the elevation. Litterfall Hg deposition is crucial to forests. Urban areas have high wet deposition and PBM dry deposition because of high reactive mercury levels. Grasslands and forests have significant GOM and GEM dry deposition, respectively. Evergreen broadleaf forests bear high litterfall Hg deposition. Future research needs have been proposed based on the current knowledge of global mercury deposition to terrestrial surfaces.


2011 ◽  
Vol 45 (2) ◽  
pp. 569-575 ◽  
Author(s):  
Andrew P. Rutter ◽  
James J. Schauer ◽  
Martin M. Shafer ◽  
Joel Creswell ◽  
Michael R. Olson ◽  
...  

2012 ◽  
Vol 12 (1) ◽  
pp. 2783-2815 ◽  
Author(s):  
L. Zhang ◽  
P. Blanchard ◽  
D. A. Gay ◽  
E. M. Prestbo ◽  
M. R. Risch ◽  
...  

Abstract. Dry deposition of speciated mercury, i.e., gaseous oxidized mercury (GOM), particulate bound mercury (PBM), and gaseous elemental mercury (GEM), was estimated for the year 2008–2009 at 19 monitoring locations in Eastern and Central North America. Dry deposition estimates were obtained by combining monitored 2–4 hourly speciated ambient concentration with modeled hourly dry deposition velocities (Vd) calculated using forecasted meteorology. Annual dry deposition of GOM + PBM was estimated to be in the range of 0.4 to 8.1 μg m−2 at these locations with GOM deposition being mostly 5 to 10 times higher than PBM deposition, due to their different Vd values. Net annual GEM dry deposition was estimated to be in the range of 5 to 26 μg m−2 at 18 sites and 33 μg m−2 at one site. The estimated dry deposition agrees very well with limited surrogate-surface dry deposition measurements of GOM and PBM, and also agrees with litterfall mercury measurements conducted at multiple locations in Eastern and Central North America. This study suggests that GEM contributes much more than GOM + PBM to the total dry deposition at the majority of sites considered here; the only exception is at locations close to significant point sources where GEM and GOM + PBM contribute equally to the total dry deposition. The relative magnitude of the speciated dry deposition and their good comparison with litterfall deposition suggest that mercury in litterfall primarily originates from GEM, consistent with previous limited field studies. The study also supports previous analyses suggesting that total dry deposition of mercury is equally if not more important as wet deposition of mercury on a regional scale in Eastern North America.


2016 ◽  
Vol 50 (5) ◽  
pp. 2405-2412 ◽  
Author(s):  
Maxime Enrico ◽  
Gaël Le Roux ◽  
Nicolas Marusczak ◽  
Lars-Eric Heimbürger ◽  
Adrien Claustres ◽  
...  

2020 ◽  
Vol 267 ◽  
pp. 115588
Author(s):  
Bong Joo Lee ◽  
Sae Yun Kwon ◽  
Runsheng Yin ◽  
Miling Li ◽  
Saebom Jung ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 228
Author(s):  
Rute Cesário ◽  
Nelson J. O’Driscoll ◽  
Sara Justino ◽  
Claire E. Wilson ◽  
Carlos E. Monteiro ◽  
...  

In situ air concentrations of gaseous elemental mercury (Hg(0)) and vegetation–atmosphere fluxes were quantified in both high (Cala Norte, CN) and low-to-moderate (Alcochete, ALC) Hg-contaminated saltmarsh areas of the Tagus estuary colonized by plant species Halimione portulacoides (Hp) and Sarcocornia fruticosa (Sf). Atmospheric Hg(0) ranged between 1.08–18.15 ng m−3 in CN and 1.18–3.53 ng m−3 in ALC. In CN, most of the high Hg(0) levels occurred during nighttime, while the opposite was observed at ALC, suggesting that photoreduction was not driving the air Hg(0) concentrations at the contaminated site. Vegetation–air Hg(0) fluxes were low in ALC and ranged from −0.76 to 1.52 ng m−2 (leaf area) h−1 for Hp and from −0.40 to 1.28 ng m−2 (leaf area) h−1 for Sf. In CN, higher Hg fluxes were observed for both plants, ranging from −9.90 to 15.45 ng m−2 (leaf area) h−1 for Hp and from −8.93 to 12.58 ng m−2 (leaf area) h−1 for Sf. Mercury flux results at CN were considered less reliable due to large and fast variations in the ambient air concentrations of Hg(0), which may have been influenced by emissions from the nearby chlor-alkali plant, or historical contamination. Improved experimental setup, the influence of high local Hg concentrations and the seasonal activity of the plants must be considered when assessing vegetation–air Hg(0) fluxes in Hg-contaminated areas.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 172
Author(s):  
Laura Fantozzi ◽  
Nicoletta Guerrieri ◽  
Giovanni Manca ◽  
Arianna Orrù ◽  
Laura Marziali

We present the first assessment of atmospheric pollution by mercury (Hg) in an industrialized area located in the Ossola Valley (Italian Central Alps), in close proximity to the Toce River. The study area suffers from a level of Hg contamination due to a Hg cell chlor-alkali plant operating from 1915 to the end of 2017. We measured gaseous elemental Hg (GEM) levels by means of a portable Hg analyzer during car surveys between autumn 2018 and summer 2020. Moreover, we assessed the long-term dispersion pattern of atmospheric Hg by analyzing the total Hg concentration in samples of lichens collected in the Ossola Valley. High values of GEM concentrations (1112 ng m−3) up to three orders of magnitude higher than the typical terrestrial background concentration in the northern hemisphere were measured in the proximity of the chlor-alkali plant. Hg concentrations in lichens ranged from 142 ng g−1 at sampling sites located north of the chlor-alkali plant to 624 ng g−1 in lichens collected south of the chlor-alkali plant. A north-south gradient of Hg accumulation in lichens along the Ossola Valley channel was observed, highlighting that the area located south of the chlor-alkali plant is more exposed to the dispersion of Hg emitted into the atmosphere from the industrial site. Long-term studies on Hg emission and dispersion in the Ossola Valley are needed to better assess potential impact on ecosystems and human health.


Sign in / Sign up

Export Citation Format

Share Document