Laboratory evaluation of Amazon forest biomass burning emissions

2011 ◽  
Vol 45 (39) ◽  
pp. 7455-7461 ◽  
Author(s):  
T.G. Soares Neto ◽  
J.A. Carvalho ◽  
E.V. Cortez ◽  
R.G. Azevedo ◽  
R.A. Oliveira ◽  
...  
2018 ◽  
Vol 18 (17) ◽  
pp. 12715-12734 ◽  
Author(s):  
Fernando Santos ◽  
Karla Longo ◽  
Alex Guenther ◽  
Saewung Kim ◽  
Dasa Gu ◽  
...  

Abstract. We present a characterization of the chemical composition of the atmosphere of the Brazilian Amazon rainforest based on trace gas measurements carried out during the South AMerican Biomass Burning Analysis (SAMBBA) airborne experiment in September 2012. We analyzed the observations of primary biomass burning emission tracers, i.e., carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), isoprene, and its main oxidation products, methyl vinyl ketone (MVK), methacrolein (MACR), and isoprene hydroxy hydroperoxide (ISOPOOH). The focus of SAMBBA was primarily on biomass burning emissions, but there were also several flights in areas of the Amazon forest not directly affected by biomass burning, revealing a background with a signature of biomass burning in the chemical composition due to long-range transport of biomass burning tracers from both Africa and the eastern part of Amazonia. We used the [MVK + MACR + ISOPOOH] ∕ [isoprene] ratio and the hydroxyl radical (OH) indirect calculation to assess the oxidative capacity of the Amazon forest atmosphere. We compared the background regions (CO < 150 ppbv), fresh and aged smoke plumes classified according to their photochemical age ([O3] ∕ [CO]), to evaluate the impact of biomass burning emissions on the oxidative capacity of the Amazon forest atmosphere. We observed that biomass burning emissions disturb the isoprene oxidation reactions, especially for fresh plumes ([MVK + MACR + ISOPOOH] ∕ [isoprene] =  7) downwind. The oxidation of isoprene is higher in fresh smoke plumes at lower altitudes (∼ 500 m) than in aged smoke plumes, anticipating near the surface a complex chain of oxidation reactions which may be related to secondary organic aerosol (SOA) formation. We proposed a refinement of the OH calculation based on the sequential reaction model, which considers vertical and horizontal transport for both biomass burning regimes and background environment. Our approach for the [OH] estimation resulted in values on the same order of magnitude of a recent observation in the Amazon rainforest [OH] ≅ 106 (molecules cm−3). During the fresh plume regime, the vertical profile of [OH] and the [MVK + MACR + ISOPOOH] ∕ [isoprene] ratio showed evidence of an increase in the oxidizing power in the transition from planetary boundary layer to cloud layer (1000–1500 m). These high values of [OH] (1.5 × 106 molecules cm−3) and [MVK + MACR + ISOPOOH] ∕ [isoprene] (7.5) indicate a significant change above and inside the cloud decks due to cloud edge effects on photolysis rates, which have a major impact on OH production rates.


Author(s):  
Carlos Alberto Pires de Castro-Filho ◽  
Corina da Costa Freitas ◽  
Sidnei Joao Siqueira Sant'Anna ◽  
Adriano Jose Nogueira Lima ◽  
Niro Higuchi
Keyword(s):  

2021 ◽  
Author(s):  
Valerii S. Kozlov ◽  
Igor B. Konovalov ◽  
Mikhail V. Panchenko ◽  
Victor N. Uzhegov ◽  
Dmitriy G. Chernov ◽  
...  

2018 ◽  
Vol 48 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Cecilia P.I.B. WOORTMANN ◽  
Niro HIGUCHI ◽  
Joaquim dos SANTOS ◽  
Roseana P. da SILVA

ABSTRACT The Amazon forest comprises many different forest types, amongst them are campinas and campinaranas, which occur on Amazonian sandy soils, representing 2.65% of Amazonian territory. An understanding of the ecology and quantification of the environmental goods and services of campinaranas is key to their conservation. Based on a direct method to estimate biomass and carbon content of campinarana, we harvested and weighted 89 trees and other forest components in ten randomly allocated plots of 100 m2 (10 x 10 m) and 11 additional trees outside the plots. The data allowed us to describe how biomass is distributed amongst campinarana vegetation and amongst tree compartments. We developed allometric equations to estimate the total, above- and below-ground biomass and carbon stock of this forest type. We used a Weibull function to test if the diameter distribution of the individual trees sampled was consistent with the diameter distribution of the forest type. We also tested if terra-firme forest biomass equations could be used to estimate campinarana biomass, and whether a correction factor based on dominant height would reduce the error from these estimates. Allometric equations are considered to be the most reliable and rapid method for calculating forest biomass, and are used in forest management and climate change studies. These are the first total biomass equations developed for central Amazonian campinaranas. The best fitted allometric equation for total fresh biomass was: ln (Total Biomass) = -1.373 + 2.546 * ln DBH (R ² = 0.98, Sxy% = 4.19%).


2017 ◽  
Author(s):  
Fernando C. Santos ◽  
Karla M. Longo ◽  
Alex B. Guenther ◽  
Saewung Kim ◽  
Dasa Gu ◽  
...  

Abstract. We present a characterization of the chemical composition of the atmosphere of the Brazilian Amazon rainforest based on trace gases measurements carried out during the South American Biomass Burning Analysis (SAMBBA) airborne experiment in September 2012. We analyzed the observations of primary biomass burning emission tracers, i.e., carbon monoxide (CO) and nitrogen oxides (NOx), ozone (O3), isoprene, and its main oxidation products, methyl vinyl ketone (MVK), methacrolein (MACR), and hydroxyhydroperoxides (ISOPOOH). The focus of SAMBBA was primarily on biomass burning emissions, but there were also several flights in areas of the Amazon forest not directly affected by biomass burning, revealing a background with a signature of biomass burning in the chemical composition due to long-range transport of biomass burning tracers from both Africa and the eastern part of Amazonia. We used the [MVK + MACR + ISOPOOH] / [Isoprene] ratio and the hydroxyl radical (OH) indirect calculation to assess the oxidative capacity of the Amazon forest atmosphere. We compared the background regions (CO 


2015 ◽  
Vol 15 (5) ◽  
pp. 2791-2804 ◽  
Author(s):  
F. Pacifico ◽  
G. A. Folberth ◽  
S. Sitch ◽  
J. M. Haywood ◽  
L. V. Rizzo ◽  
...  

Abstract. The HadGEM2 earth system climate model was used to assess the impact of biomass burning on surface ozone concentrations over the Amazon forest and its impact on vegetation, under present-day climate conditions. Here we consider biomass burning emissions from wildfires, deforestation fires, agricultural forest burning, and residential and commercial combustion. Simulated surface ozone concentration is evaluated against observations taken at two sites in the Brazilian Amazon forest for years 2010 to 2012. The model is able to reproduce the observed diurnal cycle of surface ozone mixing ratio at the two sites, but overestimates the magnitude of the monthly averaged hourly measurements by 5–15 ppb for each available month at one of the sites. We vary biomass burning emissions over South America by ±20, 40, 60, 80 and 100% to quantify the modelled impact of biomass burning on surface ozone concentrations and ozone damage on vegetation productivity over the Amazon forest. We used the ozone damage scheme in the "high" sensitivity mode to give an upper limit for this effect. Decreasing South American biomass burning emissions by 100% (i.e. to zero) reduces surface ozone concentrations (by about 15 ppb during the biomass burning season) and suggests a 15% increase in monthly mean net primary productivity averaged over the Amazon forest, with local increases up to 60%. The simulated impact of ozone damage from present-day biomass burning on vegetation productivity is about 230 TgC yr−1. Taking into account that uncertainty in these estimates is substantial, this ozone damage impact over the Amazon forest is of the same order of magnitude as the release of carbon dioxide due to fire in South America; in effect it potentially doubles the impact of biomass burning on the carbon cycle.


2014 ◽  
Vol 124 (3) ◽  
pp. 545-560 ◽  
Author(s):  
Jean Pierre Ometto ◽  
Ana Paula Aguiar ◽  
Talita Assis ◽  
Luciana Soler ◽  
Pedro Valle ◽  
...  

2016 ◽  
Vol 16 (11) ◽  
pp. 6961-6975 ◽  
Author(s):  
Gabriel Pereira ◽  
Ricardo Siqueira ◽  
Nilton E. Rosário ◽  
Karla L. Longo ◽  
Saulo R. Freitas ◽  
...  

Abstract. Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September–31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p  >  0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN typically underestimate the smoke particle loading in the eastern region of Amazon forest, while 3BEM_FRP estimations to the area tend to overestimate fire emissions. The daily regional CO emission fluxes from 3BEM and FINN have linear correlation coefficients of 0.75–0.92, with typically 20–30 % higher emission fluxes in FINN. The daily regional CO emission fluxes from 3BEM_FRP and GFAS show linear correlation coefficients between 0.82 and 0.90, with a particularly strong correlation near the arc of deforestation in the Amazon rainforest. In this region, GFAS has a tendency to present higher CO emissions than 3BEM_FRP, while 3BEM_FRP yields more emissions in the area of soybean expansion east of the Amazon forest. Atmospheric aerosol optical thickness is simulated by using the emission inventories with two operational atmospheric chemistry transport models: the IFS from Monitoring Atmospheric Composition and Climate (MACC) and the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modelling System (CCATT-BRAMS). Evaluation against MODIS observations shows a good representation of the general patterns of the AOT550 nm time series. However, the aerosol emissions from fires with particularly high biomass consumption still lead to an underestimation of the atmospheric aerosol load in both models.


Sign in / Sign up

Export Citation Format

Share Document