scholarly journals Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study

2015 ◽  
Vol 15 (5) ◽  
pp. 2791-2804 ◽  
Author(s):  
F. Pacifico ◽  
G. A. Folberth ◽  
S. Sitch ◽  
J. M. Haywood ◽  
L. V. Rizzo ◽  
...  

Abstract. The HadGEM2 earth system climate model was used to assess the impact of biomass burning on surface ozone concentrations over the Amazon forest and its impact on vegetation, under present-day climate conditions. Here we consider biomass burning emissions from wildfires, deforestation fires, agricultural forest burning, and residential and commercial combustion. Simulated surface ozone concentration is evaluated against observations taken at two sites in the Brazilian Amazon forest for years 2010 to 2012. The model is able to reproduce the observed diurnal cycle of surface ozone mixing ratio at the two sites, but overestimates the magnitude of the monthly averaged hourly measurements by 5–15 ppb for each available month at one of the sites. We vary biomass burning emissions over South America by ±20, 40, 60, 80 and 100% to quantify the modelled impact of biomass burning on surface ozone concentrations and ozone damage on vegetation productivity over the Amazon forest. We used the ozone damage scheme in the "high" sensitivity mode to give an upper limit for this effect. Decreasing South American biomass burning emissions by 100% (i.e. to zero) reduces surface ozone concentrations (by about 15 ppb during the biomass burning season) and suggests a 15% increase in monthly mean net primary productivity averaged over the Amazon forest, with local increases up to 60%. The simulated impact of ozone damage from present-day biomass burning on vegetation productivity is about 230 TgC yr−1. Taking into account that uncertainty in these estimates is substantial, this ozone damage impact over the Amazon forest is of the same order of magnitude as the release of carbon dioxide due to fire in South America; in effect it potentially doubles the impact of biomass burning on the carbon cycle.

2014 ◽  
Vol 14 (14) ◽  
pp. 19955-19983 ◽  
Author(s):  
F. Pacifico ◽  
G. A. Folberth ◽  
S. Sitch ◽  
J. M. Haywood ◽  
P. Artaxo ◽  
...  

Abstract. The HadGEM2 Earth System climate model was used to assess the impact of biomass burning on surface ozone concentrations over the Amazon forest and its impact on vegetation. Simulated surface ozone concentration is evaluated against observations taken at two sites in the Brazilian Amazon forest. The model is able to reproduce the observed diurnal cycle of surface ozone mixing ratio at the two sites, but overestimates the magnitude of the monthly averaged hourly measurements by 5–15 ppb for each available month at one of the sites. We vary biomass burning emissions over South America by ±20, 40, 60, 80 and 100% to quantify the modelled impact of biomass burning on surface ozone concentrations and ozone damage on vegetation productivity over the Amazon forest. Decreasing South American biomass burning emissions by 100% (i.e. to zero) reduces surface ozone concentrations and suggests a 15% increase in monthly mean net primary productivity averaged over the Amazon forest, with local increases up to 60%: this gives us an estimate of the effect of current biomass burning on plant productivity. When biomass burning emissions are increased by 100%, our model simulates a maximum impact of 10% reduction in monthly mean net plant productivity averaged over the Amazon forest, with local peaks of 50–60% reduction for the months of intense fire activity.


2014 ◽  
Vol 14 (8) ◽  
pp. 3899-3912 ◽  
Author(s):  
Z. S. Stock ◽  
M. R. Russo ◽  
J. A. Pyle

Abstract. The continuing growth of the world's urban population has led to an increasing number of cities with more than 10 million inhabitants. The higher emissions of pollutants, coupled to higher population density, makes predictions of air quality in these megacities of particular importance from both a science and a policy perspective. Global climate models are typically run at coarse resolution to enable both the efficient running of long time integrations, and the ability to run multiple future climate scenarios. However, when considering surface ozone concentrations at the local scale, coarse resolution can lead to inaccuracies arising from the highly nonlinear ozone chemistry and the sensitivity of ozone to the distribution of its precursors on smaller scales. In this study, we use UM-UKCA, a global atmospheric chemistry model, coupled to the UK Met Office Unified Model, to investigate the impact of model resolution on tropospheric ozone, ranging from global to local scales. We focus on the model's ability to represent the probability of high ozone concentrations in the summer and low ozone concentrations, associated with polluted megacity environments, in the winter, and how this varies with horizontal resolution. We perform time-slice integrations with two model configurations at typical climate resolution (CR, ~150 km) and at a higher resolution (HR, ~40 km). The CR configuration leads to overestimation of ozone concentrations on both regional and local scales, while it gives broadly similar results to the HR configuration on the global scale. The HR configuration is found to produce a more realistic diurnal cycle of ozone concentrations and to give a better representation of the probability density function of ozone values in urban areas such as the megacities of London and Paris. We find the observed differences in model behaviour between CR and HR configurations to be largely caused by chemical differences during the winter and meteorological differences during the summer.


2013 ◽  
Vol 13 (10) ◽  
pp. 27423-27458
Author(s):  
Z. S. Stock ◽  
M. R. Russo ◽  
J. A. Pyle

Abstract. The continuing growth of the world's urban population has led to an increasing number of cities with more than 10 million inhabitants. The higher emissions of pollutants, coupled to higher population density, makes predictions of air quality in these megacities of particular importance from both a science and a policy perspective. Global climate models are typically run at coarse resolution to enable both the efficient running of long time integrations, and the ability to run multiple future climate scenarios. However, when considering surface ozone concentrations at the local scale, coarse resolution can lead to inaccuracies arising from the highly non-linear ozone chemistry and the sensitivity of ozone to the distribution of its precursors on smaller scales. In this study, we use UM-UKCA, a global atmospheric chemistry model, coupled to the UK Met Office Unified Model, to investigate the impact of model resolution on tropospheric ozone, ranging from global to local scales. We focus on the model's ability to represent the probability of high ozone concentrations in the summer and low ozone concentrations, associated with polluted megacity environments, in the winter, and how this varies with horizontal resolution. We perform time-slice integrations with two model configurations at typical climate resolution (CR, ~150 km) and at a higher resolution (HR, ~40 km). The CR configuration leads to overestimation of ozone concentrations on both regional and local scales, while it gives broadly similar results to the HR configuration on the global scale. The HR configuration is found to produce a more realistic diurnal cycle of ozone concentrations and to give a better representation of the probability density function of ozone values in urban areas such as the megacities of London and Paris. We discuss the possible causes for the observed difference in model behaviour between CR and HR configurations and estimate the relative contribution of chemical and meteorological factors at the different scales.


2013 ◽  
Vol 13 (24) ◽  
pp. 12215-12231 ◽  
Author(s):  
Z. S. Stock ◽  
M. R. Russo ◽  
T. M. Butler ◽  
A. T. Archibald ◽  
M. G. Lawrence ◽  
...  

Abstract. We examine the effects of ozone precursor emissions from megacities on present-day air quality using the global chemistry–climate model UM-UKCA (UK Met Office Unified Model coupled to the UK Chemistry and Aerosols model). The sensitivity of megacity and regional ozone to local emissions, both from within the megacity and from surrounding regions, is important for determining air quality across many scales, which in turn is key for reducing human exposure to high levels of pollutants. We use two methods, perturbation and tagging, to quantify the impact of megacity emissions on global ozone. We also completely redistribute the anthropogenic emissions from megacities, to compare changes in local air quality going from centralised, densely populated megacities to decentralised, lower density urban areas. Focus is placed not only on how changes to megacity emissions affect regional and global NOx and O3, but also on changes to NOy deposition and to local chemical environments which are perturbed by the emission changes. The perturbation and tagging methods show broadly similar megacity impacts on total ozone, with the perturbation method underestimating the contribution partially because it perturbs the background chemical environment. The total redistribution of megacity emissions locally shifts the chemical environment towards more NOx-limited conditions in the megacities, which is more conducive to ozone production, and monthly mean surface ozone is found to increase up to 30% in megacities, depending on latitude and season. However, the displacement of emissions has little effect on the global annual ozone burden (0.12% change). Globally, megacity emissions are shown to contribute ~3% of total NOy deposition. The changes in O3, NOx and NOy deposition described here are useful for quantifying megacity impacts and for understanding the sensitivity of megacity regions to local emissions. The small global effects of the 100% redistribution carried out in this study suggest that the distribution of emissions on the local scale is unlikely to have large implications for chemistry–climate processes on the global scale.


2018 ◽  
Vol 18 (17) ◽  
pp. 12715-12734 ◽  
Author(s):  
Fernando Santos ◽  
Karla Longo ◽  
Alex Guenther ◽  
Saewung Kim ◽  
Dasa Gu ◽  
...  

Abstract. We present a characterization of the chemical composition of the atmosphere of the Brazilian Amazon rainforest based on trace gas measurements carried out during the South AMerican Biomass Burning Analysis (SAMBBA) airborne experiment in September 2012. We analyzed the observations of primary biomass burning emission tracers, i.e., carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), isoprene, and its main oxidation products, methyl vinyl ketone (MVK), methacrolein (MACR), and isoprene hydroxy hydroperoxide (ISOPOOH). The focus of SAMBBA was primarily on biomass burning emissions, but there were also several flights in areas of the Amazon forest not directly affected by biomass burning, revealing a background with a signature of biomass burning in the chemical composition due to long-range transport of biomass burning tracers from both Africa and the eastern part of Amazonia. We used the [MVK + MACR + ISOPOOH] ∕ [isoprene] ratio and the hydroxyl radical (OH) indirect calculation to assess the oxidative capacity of the Amazon forest atmosphere. We compared the background regions (CO < 150 ppbv), fresh and aged smoke plumes classified according to their photochemical age ([O3] ∕ [CO]), to evaluate the impact of biomass burning emissions on the oxidative capacity of the Amazon forest atmosphere. We observed that biomass burning emissions disturb the isoprene oxidation reactions, especially for fresh plumes ([MVK + MACR + ISOPOOH] ∕ [isoprene] =  7) downwind. The oxidation of isoprene is higher in fresh smoke plumes at lower altitudes (∼ 500 m) than in aged smoke plumes, anticipating near the surface a complex chain of oxidation reactions which may be related to secondary organic aerosol (SOA) formation. We proposed a refinement of the OH calculation based on the sequential reaction model, which considers vertical and horizontal transport for both biomass burning regimes and background environment. Our approach for the [OH] estimation resulted in values on the same order of magnitude of a recent observation in the Amazon rainforest [OH] ≅ 106 (molecules cm−3). During the fresh plume regime, the vertical profile of [OH] and the [MVK + MACR + ISOPOOH] ∕ [isoprene] ratio showed evidence of an increase in the oxidizing power in the transition from planetary boundary layer to cloud layer (1000–1500 m). These high values of [OH] (1.5 × 106 molecules cm−3) and [MVK + MACR + ISOPOOH] ∕ [isoprene] (7.5) indicate a significant change above and inside the cloud decks due to cloud edge effects on photolysis rates, which have a major impact on OH production rates.


2009 ◽  
Vol 5 (3) ◽  
pp. 471-480 ◽  
Author(s):  
Y.-X. Li ◽  
H. Renssen ◽  
A. P. Wiersma ◽  
T. E. Törnqvist

Abstract. The 8.2 ka event is the most prominent abrupt climate change in the Holocene and is often believed to result from catastrophic drainage of proglacial lakes Agassiz and Ojibway (LAO) that routed through the Hudson Bay and the Labrador Sea into the North Atlantic Ocean, and perturbed Atlantic meridional overturning circulation (MOC). One key assumption of this triggering mechanism is that the LAO freshwater drainage was dispersed over the Labrador Sea. Recent data, however, show no evidence of lowered δ18O values, indicative of low salinity, from the open Labrador Sea around 8.2 ka. Instead, negative δ18O anomalies are found close to the east coast of North America, extending as far south as Cape Hatteras, North Carolina, suggesting that the freshwater drainage may have been confined to a long stretch of continental shelf before fully mixing with North Atlantic Ocean water. Here we conduct a sensitivity study that examines the effects of a southerly drainage route on the 8.2 ka event with the ECBilt-CLIO-VECODE model. Hosing experiments of four routing scenarios, where freshwater was introduced to the Labrador Sea in the northerly route and to three different locations along the southerly route, were performed to investigate the routing effects on model responses. The modeling results show that a southerly drainage route is possible but generally yields reduced climatic consequences in comparison to those of a northerly route. This finding implies that more freshwater would be required for a southerly route than for a northerly route to produce the same climate anomaly. The implicated large amount of LAO drainage for a southerly routing scenario is in line with a recent geophysical modelling study of gravitational effects on sea-level change associated with the 8.2 ka event, which suggests that the volume of drainage might be larger than previously estimated.


2008 ◽  
Vol 47 (5) ◽  
pp. 1456-1466 ◽  
Author(s):  
Zhining Tao ◽  
Allen Williams ◽  
Ho-Chun Huang ◽  
Michael Caughey ◽  
Xin-Zhong Liang

Abstract Different cumulus schemes cause significant discrepancies in simulated precipitation, cloud cover, and temperature, which in turn lead to remarkable differences in simulated biogenic volatile organic compound (BVOC) emissions and surface ozone concentrations. As part of an effort to investigate the impact (and its uncertainty) of climate changes on U.S. air quality, this study evaluates the sensitivity of BVOC emissions and surface ozone concentrations to the Grell (GR) and Kain–Fritsch (KF) cumulus parameterizations. Overall, using the KF scheme yields less cloud cover, larger incident solar radiation, warmer surface temperature, and higher boundary layer height and hence generates more BVOC emissions than those using the GR scheme. As a result, the KF (versus GR) scheme produces more than 10 ppb of summer mean daily maximum 8-h ozone concentration over broad regions, resulting in a doubling of the number of high-ozone occurrences. The contributions of meteorological conditions versus BVOC emissions on regional ozone sensitivities to the choice of the cumulus scheme largely offset each other in the California and Texas regions, but the contrast in BVOC emissions dominates over that in the meteorological conditions for ozone differences in the Midwest and Northeast regions. The result demonstrates the necessity of considering the uncertainty of future ozone projections that are identified with alternative model physics configurations.


2016 ◽  
Vol 17 (11) ◽  
pp. 2959-2978 ◽  
Author(s):  
J. Alejandro Martinez ◽  
Francina Dominguez ◽  
Gonzalo Miguez-Macho

Abstract A sensitivity study of the impact of a groundwater scheme on hydrometeorological variables in coupled land–atmosphere simulations over southern South America is presented. It is found that shallow water tables in the groundwater scheme lead to reduced drainage and even upward capillary fluxes over parts of the central and southern La Plata basin. This leads to an increase in the simulated moisture in the root zone, which in turn produces an increase in evapotranspiration (ET) over the southern part of the domain, where ET is water limited. There is also a decrease in the near-surface temperature, in the range 0.5°–1.0°C. During the dry season, the increases in ET and relative humidity over the central La Plata coincide with an increase in precipitation downstream. Including groundwater leads to an increase in precipitation over parts of the central and southern La Plata basin during the early rainy season (October–December). The overall increase in ET and precipitation over the southern La Plata basin during the early rainy season is 13% and 10%, respectively. The additional precipitation comes from both an increase in the availability of atmospheric moisture when the groundwater scheme is used and its effect on the atmospheric instability. In the La Plata basin, including a representation of groundwater increases simulated precipitation and partially alleviates a warm and dry bias present in simulations without realistic subsurface hydrology.


2005 ◽  
Vol 5 (5) ◽  
pp. 1187-1203 ◽  
Author(s):  
C. Ordóñez ◽  
H. Mathis ◽  
M. Furger ◽  
S. Henne ◽  
C. Hüglin ◽  
...  

Abstract. An Analysis of Covariance (ANCOVA) was used to derive the influence of the meteorological variability on the daily maximum ozone concentrations at 12 low-elevation sites north of the Alps in Switzerland during the four seasons in the 1992–2002 period. The afternoon temperature and the morning global radiation were the variables that accounted for most of the meteorological variability in summer and spring, while other variables that can be related to vertical mixing and dilution of primary pollutants (afternoon global radiation, wind speed, stability or day of the week) were more significant in winter. In addition, the number of days after a frontal passage was important to account for ozone build-up in summer and ozone destruction in winter. The statistical model proved to be a robust tool for reducing the impact of the meteorological variability on the ozone concentrations. The explained variance of the model, averaged over all stations, ranged from 60.2% in winter to 71.9% in autumn. The year-to-year variability of the seasonal medians of daily ozone maxima was reduced by 85% in winter, 60% in summer, and 50% in autumn and spring after the meteorological adjustment. For most stations, no significantly negative trends (at the 95% confidence level) of the summer medians of daily O3 or Ox (O3+NO2) maxima were found despite the significant reduction in the precursor emissions in Central Europe. However, significant downward trends in the summer 90th percentiles of daily Ox maxima were observed at 6 sites in the region around Zürich (on average −0.73 ppb yr-1 for those sites). The lower effect of the titration by NO as a consequence of the reduced emissions could partially explain the significantly positive O3 trends in the cold seasons (on average 0.69 ppb yr-1 in winter and 0.58 ppb yr-1 in autumn). The increase of Ox found for most stations in autumn (on average 0.23 ppb yr-1) and winter (on average 0.39 ppb yr-1) could be due to increasing European background ozone levels, in agreement with other studies. The statistical model was also able to explain the very high ozone concentrations in summer 2003, the warmest summer in Switzerland for at least ~150 years. On average, the measured daily ozone maximum was 15 ppb (nearly 29%) higher than in the reference period summer 1992–2002, corresponding to an excess of 5 standard deviations of the summer means of daily ozone maxima in that period.


Sign in / Sign up

Export Citation Format

Share Document