scholarly journals Comparation of aerosol optical properties and associated radiative effects of air pollution events between summer and winter: A case study in January and July 2014 over Wuhan, Central China

2019 ◽  
Vol 218 ◽  
pp. 117004 ◽  
Author(s):  
Shikuan Jin ◽  
Yingying Ma ◽  
Ming Zhang ◽  
Wei Gong ◽  
Lianfa Lei ◽  
...  
2017 ◽  
Vol 9 (10) ◽  
pp. 997 ◽  
Author(s):  
Ming Zhang ◽  
Lunche Wang ◽  
Wei Gong ◽  
Yingying Ma ◽  
Boming Liu

Author(s):  
Zhanqing Li ◽  
Xiangao Xia ◽  
Maureen Cribb ◽  
Wen Mi ◽  
Brent Holben ◽  
...  

2010 ◽  
Vol 10 (2) ◽  
pp. 5627-5663 ◽  
Author(s):  
S. Marcq ◽  
P. Laj ◽  
J. C. Roger ◽  
P. Villani ◽  
K. Sellegri ◽  
...  

Abstract. Intense anthropogenic emissions over the Indian sub-continent lead to the formation of layers of particulate pollution that can be transported to the high altitude regions of the Himalaya-Hindu-Kush (HKH). Aerosol particles contain a substantial fraction of strongly absorbing material, including black carbon (BC), organic compounds (OC), and dust all of which can contribute to atmospheric warming, in addition to greenhouse gases. Using a 3-year record of continuous measurements of aerosol optical properties, we present a time series of key climate relevant aerosol properties including the aerosol absorption (σap) and scattering (σsp) coefficients as well as the single-scattering albedo (w). Results of this investigation show substantial seasonal variability of these properties, with long range transport during the pre- and post-monsoon seasons and efficient precipitation scavenging of aerosol particles during the monsoon season. The monthly averaged scattering coefficients range from 0.1 Mm−1 (monsoon) to 20 Mm−1 while the average absorption coefficients range from 0.5 Mm−1 to 3.5 Mm−1. Both have their maximum values during the pre-monsoon period (April) and reach a minimum during Monsoon (July–August). This leads to w values from 0.86 (pre-monsoon) to 0.79 (monsoon) seasons. Significant diurnal variability due to valley wind circulation is also reported. Using typical air mass trajectories encountered at the station, and aerosol optical depth (aod) measurements, we calculated the resulting direct local radiative forcing due to aerosols. We found that the presence of absorbing particulate material can locally induce an additional top of the atmosphere (TOA) forcing of 10 to 20 W m−2 for the first atmospheric layer (500 m above surface). The TOA positive forcing depends on the presence of snow at the surface, and takes place preferentially during episodes of regional pollution occurring on a very regular basis in the Himalayan valleys. Warming of the first atmospheric layer is paralleled by a substantial decrease of the amount of radiation reaching the surface. The surface forcing is estimated to range from −4 to −20 W m−2 for small-scale regional pollution events and large-scale pollution events, respectively. The calculated surface forcing is also very dependent on surface albedo, with maximum values occurring over a snow-covered surface. Overall, this work presents the first estimates of aerosol direct radiative forcing over the high Himalaya based on in-situ aerosol measurements, and results suggest a TOA forcing significantly greater than the IPCC reported values for green house gases.


2018 ◽  
Vol 18 (12) ◽  
pp. 3035-3046 ◽  
Author(s):  
Boming Liu ◽  
Wei Gong ◽  
Yingying Ma ◽  
Ming Zhang ◽  
Jian Yang ◽  
...  

2007 ◽  
Vol 7 (2) ◽  
pp. 4705-4760 ◽  
Author(s):  
A. Hodzic ◽  
S. Madronich ◽  
B. Bohn ◽  
S. Massie ◽  
L. Menut ◽  
...  

Abstract. The present study investigates effects of wildfire emissions on air quality in Europe during an intense fire season that occurred in summer 2003. A meso-scale chemistry transport model CHIMERE is used, together with ground based and satellite aerosol optical measurements, to assess the dispersion of fire emissions and to quantify the associated radiative effects. The model has been improved to take into account the MODIS daily smoke emission inventory as well as the injection altitude of smoke particles. The simulated aerosol optical properties are inputted into a radiative transfer model to estimate (off-line) the effects of smoke particles on photolysis rates and atmospheric radiative forcing. We have found that wildfires generated comparable amounts of primary aerosol pollutants (220 kTons of PM2.5, fine particles) to anthropogenic sources during August 2003, and caused significant changes in aerosol optical properties not only close to the fire source regions, but also over a large part of Europe as a result of the long-range transport of smoke. Including these emissions into the model significantly improved its performance in simulating observed aerosol concentrations and optical properties. Quantitative comparison with MODIS and POLDER data during the major fire event (3–8 August) showed the ability of the model to reproduce high aerosol optical thickness (AOT) over Northern Europe caused by the advection of the smoke plume from the Portugal source region. Statistical analyses of model simulations showed a better agreement with observed AOT data at AERONET ground stations and suggest that wildfire emissions are responsible for a 30% enhancement in mean AOT values during the heat-wave episode. The implications for air quality over a large part of Europe are significant during this episode. First, directly, the modeled wildfire emissions caused an increase in average PM10 ground concentrations from 20 to 200%. The largest enhancement in PM10 concentrations stayed however confined within a 200 km area around the fire source locations and reached up to 40 μ g/m3. Second, indirectly, the presence of elevated smoke layers over Europe significantly altered atmospheric radiative properties: the model results imply a 10 to 30% decrease in photolysis rates and an increase in atmospheric radiative forcing of 10–35 Wm−2 during the period of strong fire influence throughout a large part of Europe. These results suggest that sporadic wildfire events may have significant effects on regional photochemistry and atmospheric stability, and need to be considered in current chemistry-transport models.


Sign in / Sign up

Export Citation Format

Share Document