scholarly journals Detection of a secondary organic aerosol tracer derived from personal care products

2020 ◽  
pp. 118078
Author(s):  
Alissia Milani ◽  
Ibrahim M. Al-Naiema ◽  
Elizabeth A. Stone
2021 ◽  
Vol 21 (17) ◽  
pp. 13655-13666
Author(s):  
Ziwei Mo ◽  
Ru Cui ◽  
Bin Yuan ◽  
Huihua Cai ◽  
Brian C. McDonald ◽  
...  

Abstract. Non-methane volatile organic compounds (NMVOCs) are important precursors of ozone (O3) and secondary organic aerosol (SOA), which play key roles in tropospheric chemistry. A huge amount of NMVOC emissions from solvent use are complicated by a wide spectrum of sources and species. This work presents a long-term NMVOC emission inventory of solvent use during 2000–2017 in China. Based on a mass (material) balance method, NMVOC emissions were estimated for six categories, including coatings, adhesives, inks, pesticides, cleaners, and personal care products. The results show that NMVOC emissions from solvent use in China increased rapidly from 2000 to 2014 then kept stable after 2014. The total emission increased from 1.6 Tg (1.2–2.2 Tg at 95 % confidence interval) in 2000 to 10.6 Tg (7.7–14.9 Tg) in 2017. The substantial growth is driven by the large demand for solvent products in both industrial and residential activities. However, increasing treatment facilities in the solvent-related factories in China restrained the continued growth of solvent NMVOC emissions in recent years. Rapidly developing and heavily industrialized provinces such as Jiangsu, Shandong, and Guangdong contributed significantly to the solvent use emissions. Oxygenated VOCs, alkanes, and aromatics were the main components, accounting for 42 %, 28 %, and 21 % of total NMVOC emissions in 2017, respectively. Our results and previous inventories are generally comparable within the estimation uncertainties (−27 %–52 %). However, there exist significant differences in the estimates of sub-categories. Personal care products were a significant and quickly rising source of NMVOCs, which were probably underestimated in previous inventories. Emissions from solvent use were growing faster compared with transportation and combustion emissions, which were relatively better controlled in China. Environmentally friendly products can reduce the NMVOC emissions from solvent use. Supposing all solvent-based products were substituted with water-based products, it would result in 37 %, 41 %, and 38 % reduction of emissions, ozone formation potential (OFP), and secondary organic aerosol formation potential (SOAP), respectively. These results indicate there is still large potential for NMVOC reduction by reducing the utilization of solvent-based products and implementation of end-of-pipe controls across industrial sectors.


2012 ◽  
Vol 2 (10) ◽  
pp. 1-2
Author(s):  
D. Muthukrishnaveni D. Muthukrishnaveni ◽  
◽  
Dr. D. Muruganandam Dr. D. Muruganandam

2019 ◽  
Author(s):  
Christopher Y. Lim ◽  
David H. Hagan ◽  
Matthew M. Coggon ◽  
Abigail R. Koss ◽  
Kanako Sekimoto ◽  
...  

Abstract. Biomass burning is an important source of aerosol and trace gases to the atmosphere, but how these emissions change chemically during their lifetimes is not fully understood. As part of the Fire Influence on Regional and Global Environments Experiment (FIREX 2016), we investigated the effect of photochemical aging on biomass burning organic aerosol (BBOA), with a focus on fuels from the western United States. Emissions were sampled into a small (150 L) environmental chamber and photochemically aged via the addition of ozone and irradiation by 254 nm light. While some fraction of species undergoes photolysis, the vast majority of aging occurs via reaction with OH radicals, with total OH exposures corresponding to the equivalent of up to 10 days of atmospheric oxidation. For all fuels burned, large and rapid changes are seen in the ensemble chemical composition of BBOA, as measured by an aerosol mass spectrometer (AMS). Secondary organic aerosol (SOA) formation is seen for all aging experiments and continues to grow with increasing OH exposure, but the magnitude of the SOA formation is highly variable between experiments. This variability can be explained well by a combination of experiment-to-experiment differences in OH exposure and the total concentration of non-methane organic gases (NMOGs) in the chamber before oxidation, measured by PTR-ToF-MS (r2 values from 0.64 to 0.83). From this relationship, we calculate the fraction of carbon from biomass burning NMOGs that is converted to SOA as a function of equivalent atmospheric aging time, with carbon yields ranging from 24 ± 4 % after 6 hours to 56 ± 9 % after 4 days.


2020 ◽  
Vol 6 (8) ◽  
pp. 2223-2238 ◽  
Author(s):  
Arvid Masud ◽  
Nita G. Chavez Soria ◽  
Diana S. Aga ◽  
Nirupam Aich

Reduced graphene oxide-nanoscale zero valent iron (rGO–nZVI) nanohybrid, with tunable adsorption sites of rGO and unique catalytic redox activity of nZVI, perform enhanced removal of diverse PPCPs from water.


Sign in / Sign up

Export Citation Format

Share Document