scholarly journals Airborne nitrogen deposition to the Baltic Sea: Past trends, source allocation and future projections

2021 ◽  
Vol 253 ◽  
pp. 118377
Author(s):  
Michael Gauss ◽  
Jerzy Bartnicki ◽  
Jukka-Pekka Jalkanen ◽  
Agnes Nyiri ◽  
Heiko Klein ◽  
...  
2011 ◽  
Vol 11 (19) ◽  
pp. 10057-10069 ◽  
Author(s):  
J. Bartnicki ◽  
V. S. Semeena ◽  
H. Fagerli

Abstract. The EMEP/MSC-W model has been used to compute atmospheric nitrogen deposition into the Baltic Sea basin for the period of 12 yr: 1995–2006. The level of annual total nitrogen deposition into the Baltic Sea basin has changed from 230 Gg N in 1995 to 199 Gg N in 2006, decreasing 13 %. This value corresponds well with the total nitrogen emission reduction (11 %) in the HELCOM Contracting Parties. However, inter-annual variability of nitrogen deposition to the Baltic Sea basin is relatively large, ranging from −13 % to +17 % of the averaged value. It is mainly caused by the changing meteorological conditions and especially precipitation in the considered period. The calculated monthly deposition pattern is similar for most of the years showing maxima in the autumn months October and November. The source allocation budget for atmospheric nitrogen deposition to the Baltic Sea basin was calculated for each year of the period 1997–2006. The main emission sources contributing to total nitrogen deposition are: Germany 18–22 %, Poland 11–13 % and Denmark 8–11 %. There is also a significant contribution from distant sources like the United Kingdom 6–9 %, as well as from the international ship traffic on the Baltic Sea 4–5 %.


2012 ◽  
Vol 7 (3) ◽  
pp. 034005 ◽  
Author(s):  
H E Markus Meier ◽  
Helén C Andersson ◽  
Berit Arheimer ◽  
Thorsten Blenckner ◽  
Boris Chubarenko ◽  
...  

AMBIO ◽  
2017 ◽  
Vol 46 (8) ◽  
pp. 842-851 ◽  
Author(s):  
Tobias Tamelander ◽  
Kristian Spilling ◽  
Monica Winder

2018 ◽  
Author(s):  
Daniel Neumann ◽  
Hagen Radtke ◽  
Matthias Karl ◽  
Thomas Neumann

Abstract. Atmospheric nitrogen deposition constitutes 20 % to 40 % of the nitrogen input into the North Sea and the Baltic Sea contributing to phytoplankton growth and inducing eutrophication. Major contributors to the atmospheric nitrogen emissions in the vicinity of marine water bodies are shipping and agricultural activities. The contribution of individual emission sectors to the biogeochemical nitrogen cycle needs to be evaluated in order to assess improvement of marine water quality through emission reductions of these sectors. Hence, one focus of this modeling study was to evaluate the contribution of total, shipping-related, and agricultural-related nitrogen deposition to dissolved inorganic nitrogen (DIN), particulate organic nitrogen (PON), chlorophyll-a. A second focus of this study was to compare both water bodies with respect to the accumulation and processing of nitrogen from the mentioned sources. These two research questions were evaluated by a modeling study with the coupled physical-biogeochemical model HBM-ERGOM. The fate of atmospheric deposition in total and of atmospheric nitrogen deposition from two individual sources – shipping and agricultural activities – was traced in the marine ecosystem by a tagging method. In the Baltic Sea it was found that the atmospheric nitrogen deposition contributes up to 50 % to the DIN pool at individual locations during summer. On annual average, 13 % are contributed. Approximately 5 % of DIN originated from agricultural activities and 2 % from the shipping sector. In the western and central Baltic Sea, the shipping sector contributed nearly 5 %. The pattern was similar for the agricultural share indicating that these two sources have a higher relevance in these regions. In the Baltic Sea, the atmospheric nitrogen shares of chlorophyll-a and bioavailable PON were 19 % and 18 %, respectively, and, hence, higher than of DIN. In contrast in offshore regions only, atmospheric nitrogen shares to DIN, PON, and chlorophyll-a were on a similar level compared to each other (20 % to 35 %). This difference is caused by high DIN loads and phosphorus limitation in coastal regions of the Baltic Sea. In the North Sea, the atmospheric contribution to DIN was on a similar level but showed considerable spatial variability caused by a north-south gradient. The shipping contribution to DIN was slightly lower (approximately 1.4 %) and the agricultural contribution higher (6 %) compared to the Baltic Sea. The atmospheric contribution to chlorophyll-a and bioavailable PON was considerably lower than in the Baltic Sea and on the level of the atmospheric DIN shares, which is a result of short residence times of nutrients in the North Sea compared to the Baltic Sea. The shipping and agricultural contributions to PON and chlorophyll-a were also lower.


2003 ◽  
Vol 3 (6) ◽  
pp. 2083-2099 ◽  
Author(s):  
O. Hertel ◽  
C. Ambelas Skjøth ◽  
J. Brandt ◽  
J. H. Christensen ◽  
L. M. Frohn ◽  
...  

Abstract. A new model system for mapping and forecasting nitrogen deposition to the Baltic Sea has been developed. The system is based on the Lagrangian variable scale transport-chemistry model ACDEP (Atmospheric Chemistry and Deposition model), and aims at delivering deposition estimates to be used as input to marine ecosystem models. The system is tested by comparison of model results to measurements from monitoring stations around the Baltic Sea. The comparison shows that observed annual mean ambient air concentrations and wet depositions are well reproduced by the model. Diurnal mean concentrations of NHx (sum of NH3 and NH4+) and NO2 are fairly well reproduced, whereas concentrations of total nitrate (sum of HNO3 and NO3-) are somewhat overestimated. Wet depositions of nitrate and ammonia are fairly well described for annual mean values, whereas the discrepancy is high for the monthly mean values and the wet depositions are rather poorly described concerning the diurnal mean values. The model calculations show that the annual atmospheric nitrogen deposition has a pronounced south--north gradient with depositions in the range about 1.0 T N km-2 in the south and 0.2 T N km-2 in the north. The results show that in 1999 the maximum diurnal mean deposition to the Danish waters appeared during the summer in the algae growth season. For the northern parts of the Baltic the highest depositions were distributed over most of the year. Total deposition to the Baltic Sea was for the year 1999 estimated to 318 kT N for an area of 464 406 km2 equivalent to an average deposition of 684 kg N/km2.


2019 ◽  
Vol 19 (3) ◽  
pp. 1721-1752 ◽  
Author(s):  
Matthias Karl ◽  
Johannes Bieser ◽  
Beate Geyer ◽  
Volker Matthias ◽  
Jukka-Pekka Jalkanen ◽  
...  

Abstract. Air pollution due to shipping is a serious concern for coastal regions in Europe. Shipping emissions of nitrogen oxides (NOx) in air over the Baltic Sea are of similar magnitude (330 kt yr−1) as the combined land-based NOx emissions from Finland and Sweden in all emission sectors. Deposition of nitrogen compounds originating from shipping activities contribute to eutrophication of the Baltic Sea and coastal areas in the Baltic Sea region. For the North Sea and the Baltic Sea a nitrogen emission control area (NECA) will become effective in 2021; in accordance with the International Maritime Organization (IMO) target of reducing NOx emissions from ships. Future scenarios for 2040 were designed to study the effect of enforced and planned regulation of ship emissions and the fuel efficiency development on air quality and nitrogen deposition. The Community Multiscale Air Quality (CMAQ) model was used to simulate the current and future air quality situation. The meteorological fields, the emissions from ship traffic and the emissions from land-based sources were considered at a grid resolution of 4×4 km2 for the Baltic Sea region in nested CMAQ simulations. Model simulations for the present-day (2012) air quality show that shipping emissions are the major contributor to atmospheric nitrogen dioxide (NO2) concentrations over the Baltic Sea. In the business-as-usual (BAU) scenario, with the introduction of the NECA, NOx emissions from ship traffic in the Baltic Sea are reduced by about 80 % in 2040. An approximate linear relationship was found between ship emissions of NOx and the simulated levels of annual average NO2 over the Baltic Sea in the year 2040, when following different future shipping scenarios. The burden of fine particulate matter (PM2.5) over the Baltic Sea region is predicted to decrease by 35 %–37 % between 2012 and 2040. The reduction in PM2.5 is larger over sea, where it drops by 50 %–60 % along the main shipping routes, and is smaller over the coastal areas. The introduction of NECA is critical for reducing ship emissions of NOx to levels that are low enough to sustainably dampen ozone (O3) production in the Baltic Sea region. A second important effect of the NECA over the Baltic Sea region is the reduction in secondary formation of particulate nitrate. This lowers the ship-related PM2.5 by 72 % in 2040 compared to the present day, while it is reduced by only 48 % without implementation of the NECA. The effect of a lower fuel efficiency development on the absolute ship contribution of air pollutants is limited. Still, the annual mean ship contributions in 2040 to NO2, sulfur dioxide and PM2.5 and daily maximum O3 are significantly higher if a slower fuel efficiency development is assumed. Nitrogen deposition to the seawater of the Baltic Sea decreases on average by 40 %–44 % between 2012 and 2040 in the simulations. The effect of the NECA on nitrogen deposition is most significant in the western part of the Baltic Sea. It will be important to closely monitor compliance of individual ships with the enforced and planned emission regulations.


2009 ◽  
Vol 157 (3) ◽  
pp. 792-800 ◽  
Author(s):  
Eva Remke ◽  
Emiel Brouwer ◽  
Annemieke Kooijman ◽  
Irmgard Blindow ◽  
Hans Esselink ◽  
...  

AMBIO ◽  
2019 ◽  
Vol 48 (11) ◽  
pp. 1362-1376 ◽  
Author(s):  
H. E. Markus Meier ◽  
Christian Dieterich ◽  
Kari Eilola ◽  
Matthias Gröger ◽  
Anders Höglund ◽  
...  

2011 ◽  
Vol 11 (1) ◽  
pp. 1803-1834 ◽  
Author(s):  
J. Bartnicki ◽  
V. S. Semeena ◽  
H. Fagerli

Abstract. The EMEP Unified model has been used to compute atmospheric nitrogen deposition into the Baltic Sea basin for the period of 12 years: 1995–2006. The level of annual total nitrogen deposition into the Baltic Sea basin has changed from 230 Gg N in 1995 to 199 Gg N in 2006, decreasing 13%. This value corresponds well with the total nitrogen emission reduction (11%) in the HELCOM Contracting Parties. However, inter-annual variability of nitrogen depositions to the Baltic Sea basin is relatively large, ranging from −13% to +17% of the averaged value. It is mainly caused by the changing meteorological conditions and especially precipitation in the considered period. The calculated monthly depositions are similar for most of the years showing maxima in the autumn months October and November. The source allocation budget for atmospheric nitrogen deposition to the Baltic Sea basin was calculated for each year of the period 1997–2006. The main emission sources contributing to total nitrogen deposition are: Germany 18–22 %, Poland 11–13% and Denmark 8–11%. There is also a significant contribution from distant sources like the United Kingdom 6–10%, as well as from the international ship traffic on the Baltic Sea 4–5%.


Sign in / Sign up

Export Citation Format

Share Document