Enhancement of ozone formation by increased vehicles emission and reduced coal combustion emission in Taiyuan, a traditional industrial city in northern China

2021 ◽  
pp. 118759
Author(s):  
Rumei Li ◽  
Yulong Yan ◽  
Lin Peng ◽  
Fangyuan Wang ◽  
Xingcheng Lu ◽  
...  
2020 ◽  
pp. 115999
Author(s):  
Feifan Yan ◽  
Yang Gao ◽  
Mingchen Ma ◽  
Cheng Liu ◽  
Xiangguang Ji ◽  
...  

2019 ◽  
Vol 53 (15) ◽  
pp. 9269-9278 ◽  
Author(s):  
Siyi Cai ◽  
Liang Zhu ◽  
Shuxiao Wang ◽  
Armin Wisthaler ◽  
Qing Li ◽  
...  

2017 ◽  
Vol 17 (18) ◽  
pp. 11503-11520 ◽  
Author(s):  
Pengfei Liu ◽  
Chenglong Zhang ◽  
Chaoyang Xue ◽  
Yujing Mu ◽  
Junfeng Liu ◽  
...  

Abstract. A vast area in northern China, especially during wintertime, is currently suffering from severe haze events due to the high levels of atmospheric PM2. 5. To recognize the reasons for the high levels of PM2. 5, daily samples of PM2. 5 were simultaneously collected at the four sampling sites of Beijing city (BJ), Baoding city (BD), Wangdu county (WD) and Dongbaituo (DBT) during the winter and spring of 2014–2015. The concentrations of the typical water-soluble ions (WSIs, such as Cl−, NO3−, SO42− and NH4+) at DBT were found to be remarkably higher than those at BJ in the two winters, but almost the same as those at BJ in the two springs. The evidently greater concentrations of OC, EC and secondary inorganic ions (NO3−, SO42−, NH4+ and Cl−) at DBT than at WD, BD and BJ during the winter of 2015 indicated that the pollutants in the rural area were not due to transportation from neighbouring cities but dominated by local emissions. As the distinct source of atmospheric OC and EC in the rural area, the residential coal combustion also made a contribution to secondary inorganic ions through the emissions of their precursors (NOx, SO2, NH3 and HCl) as well as heterogeneous or multiphase reactions on the surface of OC and EC. The average mass proportions of OC, EC, NO3− and SO42− at BD and WD were found to be very close to those at DBT, but were evidently different from those at BJ, implying that the pollutants in the cities of WD and BD, which are fully surrounded by the countryside, were strongly affected by the residential coal combustion. The OC ∕ EC ratios at the four sampling sites were almost the same value (4.8) when the concentrations of PM2. 5 were greater than 150 µg m−3, suggesting that the residential coal combustion could also make a dominant contribution to atmospheric PM2. 5 at BJ during the severe pollution period when the air parcels were usually from southwest–south regions, where a high density of farmers reside. The evident increase in the number of the species involved in significant correlations (p < 0. 05) from the countryside to the cities further confirmed that residential coal combustion was the dominant source of key species in the rural area. However, the complex sources including local emissions and regional transportation were responsible for the atmospheric species in the cities. Strong correlations among OC, EC, Cl−, NO3− and NH4+ were found at the four sampling sites but only a strong correlation was found between OC (or EC) and SO42− at BJ, implying that the formation rate of SO42− via heterogeneous or multiphase reactions might be relatively slower than those of NO3−, NH4+ and Cl−. Based on the chemical mass closure (CMC) method, the contributions of the primary particle emission from residential coal combustion to atmospheric PM2. 5 at BJ, BD, WD and DBT were estimated to be 32, 49, 43 and 58 %, respectively.


2018 ◽  
Vol 18 (4) ◽  
pp. 2709-2724 ◽  
Author(s):  
Yiming Liu ◽  
Qi Fan ◽  
Xiaoyang Chen ◽  
Jun Zhao ◽  
Zhenhao Ling ◽  
...  

Abstract. Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC) was developed for the first time, including emissions of hydrogen chloride (HCl) and molecular chlorine (Cl2) from coal combustion and prescribed waste incineration (waste incineration plant). The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ) modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl−, leading to enhanced heterogeneous reactions between Cl− and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl−, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m−3, 773 pptv, and 1.5  ×  103 molecule cm−3 in China, respectively. Meanwhile, the monthly mean daily maximum 8 h O3 concentration was found to increase by up to 2.0 ppbv (4.1 %), while the monthly mean NOx concentration decreased by up to 0.5 ppbv (6.1 %). The anthropogenic chlorine emissions potentially increased the 1 h O3 concentration by up to 7.7 ppbv in China. This study highlights the need for the inclusion of anthropogenic chlorine emission in air quality modeling and demonstrated its importance in tropospheric ozone formation.


2020 ◽  
Vol 20 (23) ◽  
pp. 14581-14595
Author(s):  
Qingqing Yu ◽  
Xiang Ding ◽  
Quanfu He ◽  
Weiqiang Yang ◽  
Ming Zhu ◽  
...  

Abstract. Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds in the atmosphere and have adverse effects on public health, especially through the inhalation of particulate matter (PM). At present, there is limited understanding of the size distribution of particulate-bound PAHs and their health risks on a continental scale. In this study, we carried out a PM campaign from October 2012 to September 2013 at 12 sampling sites simultaneously, including urban, suburban and remote sites in different regions of China. Size-segregated PAHs and typical tracers of coal combustion (picene), biomass burning (levoglucosan) and vehicle exhaust (hopanes) were measured. The annual averages of the 24 total measured PAHs (∑24PAHs) and benzo[a]pyrene (BaP) carcinogenic equivalent concentration (BaPeq) ranged from 7.56 to 205 ng/m3 with a mean of 53.5 ng/m3 and from 0.21 to 22.2 ng/m3 with a mean of 5.02 ng/m3, respectively. At all the sites, ∑24PAHs and BaPeq were dominant in the ultrafine particles with aerodynamic diameter < 1.1 µm, followed by those in the size ranges of 1.1–3.3 µm and > 3.3 µm. Compared with southern China, northern China witnessed much higher ∑24PAHs (87.36 vs. 17.56 ng/m3), BaPeq (8.48 vs. 1.34 ng/m3) and PAHs' inhalation cancer risk (7.4 × 10−4 vs. 1.2 × 10−4). Nationwide increases in both PAH levels and inhalation cancer risk occurred in winter. The unfavorable meteorological conditions and enhanced emissions of coal combustion and biomass burning together led to severe PAHs' pollution and high cancer risk in the atmosphere of northern China, especially during winter. Coal combustion is the major source of BaPeq in all size particles at most sampling sites. Our results suggested that the reduction of coal and biofuel consumption in the residential sector could be crucial and effective in lowering PAH concentrations and their inhalation cancer risk in China.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 277 ◽  
Author(s):  
Yichen Wang ◽  
Qiyuan Wang ◽  
Jianhuai Ye ◽  
Mengyuan Yan ◽  
Quande Qin ◽  
...  

Comparisons of aerosol composition and sources in different cities or regions are rather limited, yet important for an in-depth understanding of the spatial diversity of aerosol pollution in China. In this study, the data originating from 25 different winter aerosol mass spectrometer (AMS)/aerosol chemical speciation monitor (ACSM) studies were used to provide spatial coverage of the Beijing-Tianjin-Hebei (BTH), Guanzhong (GZ), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions. The spatial distribution and diurnal variations in aerosol composition and organic sources were analyzed to investigate the aerosol characteristics in the four regions. It was found that there were differences in the compositions of non-refractory particulate matter across the regions, e.g., more sulfate in the PRD versus more nitrate in the YRD, as well as in the organic sources, e.g., more coal combustion in BTH versus more biomass burning in GZ. The characteristics of the composition of NR-PM are similar when the campaigns were classified according to the winter of different years or the cities of different regions. The diurnal variation of the PRD-sulfate indicated its regional nature, whereas the organics from burning sources in two regions of northern China exhibited local characteristics. Based on these findings, we suggest that strict control policies for coal combustion and biomass burning emissions should be enforced in the BTH and GZ regions, respectively.


2020 ◽  
Vol 235 ◽  
pp. 117588 ◽  
Author(s):  
Chuang Li ◽  
Kun Ye ◽  
Sylvester Mawusi ◽  
Wenting Zhang ◽  
Yinhong Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document