Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning

2020 ◽  
Vol 245 ◽  
pp. 105064 ◽  
Author(s):  
Gayatry Kalita ◽  
Ravi Kumar Kunchala ◽  
Suvarna Fadnavis ◽  
Dimitris G. Kaskaoutis
2019 ◽  
Author(s):  
Yunjiang Zhang ◽  
Olivier Favez ◽  
Jean-Eudes Petit ◽  
Francesco Canonaco ◽  
Francois Truong ◽  
...  

Abstract. Organic aerosol (OA) particles are recognized as key factors influencing air quality and climate change. However, highly-time resolved year-round characterizations of their composition and sources in ambient air are still very limited due to challenging continuous observations. Here, we present an analysis of long-term variability of submicron OA using the combination of Aerosol Chemical Speciation Monitor (ACSM) and multi-wavelength aethalometer from November 2011 to March 2018 at a background site of the Paris region (France). Source apportionment of OA was achieved via partially constrained positive matrix factorization (PMF) using the multilinear engine (ME-2). Two primary OA (POA) and two oxygenated OA (OOA) factors were identified and quantified over the entire studied period. POA factors were designated as hydrocarbon-like OA (HOA) and biomass burning OA (BBOA). The latter factor presented a significant seasonality with higher concentrations in winter with significant monthly contributions to OA (18–33 %) due to enhanced residential wood burning emissions. HOA mainly originated from traffic emissions but was also influenced by biomass burning in cold periods. OOA factors were distinguished between their less- and more-oxidized fractions (LO-OOA and MO-OOA, respectively). These factors presented distinct seasonal patterns, associated with different atmospheric formation pathways. A pronounced increase of LO-OOA concentrations and contributions (50–66 %) was observed in summer, which may be mainly explained by secondary OA (SOA) formation processes involving biogenic gaseous precursors. Conversely high concentrations and OA contributions (32–62 %) of MO-OOA during winter and spring seasons were partly associated with anthropogenic emissions and/or long-range transport from northeastern Europe. The contribution of the different OA factors as a function of OA mass loading highlighted the dominant roles of POA during pollution episodes in fall and winter, and of SOA for highest springtime and summertime OA concentrations. Finally, long-term trend analyses indicated a decreasing feature (of about 200 ng m−3 yr−1) for MO-OOA, very limited or insignificant decreasing trends for primary anthropogenic carbonaceous aerosols (BBOA and HOA, along with the fossil fuel and biomass burning black carbon components), and no trend for LO-OOA over the 6+-year investigated period.


2019 ◽  
Vol 19 (23) ◽  
pp. 14755-14776 ◽  
Author(s):  
Yunjiang Zhang ◽  
Olivier Favez ◽  
Jean-Eudes Petit ◽  
Francesco Canonaco ◽  
Francois Truong ◽  
...  

Abstract. Organic aerosol (OA) particles are recognized as key factors influencing air quality and climate change. However, highly time-resolved long-term characterizations of their composition and sources in ambient air are still very limited due to challenging continuous observations. Here, we present an analysis of long-term variability of submicron OA using the combination of an aerosol chemical speciation monitor (ACSM) and a multiwavelength Aethalometer from November 2011 to March 2018 at a peri-urban background site of the Paris region (France). Source apportionment of OA was achieved via partially constrained positive matrix factorization (PMF) using the multilinear engine (ME-2). Two primary OA (POA) and two oxygenated OA (OOA) factors were identified and quantified over the entire studied period. POA factors were designated as hydrocarbon-like OA (HOA) and biomass burning OA (BBOA). The latter factor presented a significant seasonality with higher concentrations in winter with significant monthly contributions to OA (18 %–33 %) due to enhanced residential wood burning emissions. HOA mainly originated from traffic emissions but was also influenced by biomass burning in cold periods. OOA factors were distinguished between their less- and more-oxidized fractions (LO-OOA and MO-OOA, respectively). These factors presented distinct seasonal patterns, associated with different atmospheric formation pathways. A pronounced increase in LO-OOA concentrations and contributions (50 %–66 %) was observed in summer, which may be mainly explained by secondary OA (SOA) formation processes involving biogenic gaseous precursors. Conversely, high concentrations and OA contributions (32 %–62 %) of MO-OOA during winter and spring seasons were partly associated with anthropogenic emissions and/or long-range transport from northeastern Europe. The contribution of the different OA factors as a function of OA mass loading highlighted the dominant roles of POA during pollution episodes in fall and winter and of SOA for highest springtime and summertime OA concentrations. Finally, long-term trend analyses indicated a decreasing feature (of about −175 ng m−3 yr−1) for MO-OOA, very limited or insignificant decreasing trends for primary anthropogenic carbonaceous aerosols (BBOA and HOA, along with the fossil-fuel and biomass-burning black carbon components) and no statistically significant trend for LO-OOA over the 6-year investigated period.


2021 ◽  
Vol 14 (6) ◽  
pp. 4053-4068
Author(s):  
Mengying Bao ◽  
Yan-Lin Zhang ◽  
Fang Cao ◽  
Yu-Chi Lin ◽  
Yuhang Wang ◽  
...  

Abstract. Carbonaceous aerosols have great influence on the air quality, human health and climate change. Except for organic carbon (OC) and elemental carbon (EC), brown carbon (BrC) mainly originates from biomass burning as a group of OC, with strong absorption from the visible to near-ultraviolet wavelengths, and makes a considerable contribution to global warming. Large numbers of studies have reported long-term observation of OC and EC concentrations throughout the world, but studies of BrC based on long-term observations are rather limited. In this study, we established a two-wavelength method (658 and 405 nm) applied in the Sunset thermal–optical carbon analyzer. Based on a 1-year observation, we firstly investigated the characteristics, meteorological impact and transport process of OC and EC. Since BrC absorbs light at 405 nm more effectively than 658 nm, we defined the enhanced concentrations (dEC = EC405 nm − EC658 nm) and gave the possibility of providing an indicator of BrC. The receptor model and MODIS fire information were used to identify the presence of BrC aerosols. Our results showed that the carbonaceous aerosol concentrations were the highest in winter and lowest in summer. Traffic emission was an important source of carbonaceous aerosols in Nanjing. Receptor model results showed that strong local emissions were found for OC and EC; however, dEC was significantly affected by regional or long-range transport. The dEC/OC and OC/EC ratios showed similar diurnal patterns, and the dEC/OC increased when the OC/EC ratios increased, indicating strong secondary sources or biomass burning contributions to dEC. A total of two biomass burning events both in summer and winter were analyzed, and the results showed that the dEC concentrations were obviously higher on biomass burning days; however, no similar levels of the OC and EC concentrations were found both in biomass burning days and normal days in summer, suggesting that biomass burning emissions made a great contribution to dEC, and the sources of OC and EC were more complicated. Large number of open fire counts from the northwestern and southwestern areas of the study site were observed in winter and significantly contributed to OC, EC and dEC. In addition, the nearby Yangtze River Delta area was one of the main potential source areas of dEC, suggesting that anthropogenic emissions could also be important sources of dEC. The results proved that dEC can be an indicator of BrC on biomass burning days. Our modified two-wavelength instrument provided more information than the traditional single-wavelength thermal–optical carbon analyzer and gave a new idea about the measurement of BrC; the application of dEC data needs to be further investigated.


2016 ◽  
Author(s):  
C. L. Reddington ◽  
D. V. Spracklen ◽  
P. Artaxo ◽  
D. Ridley ◽  
L. V. Rizzo ◽  
...  

Abstract. We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1) in the model, in which tropical fires account for 66–84 % of global particulate emissions from fire. The model underestimates PM2.5 concentrations where observations are available over South America and AOD over South America, Africa and Southeast Asia. Underestimation of AOD over tropical regions impacted by biomass burning is consistent with previous studies. Where coincident observations of surface PM2.5 and AOD are available we find a greater model underestimation of AOD than PM2.5 Increasing particulate emissions to improve simulation of AOD can therefore lead to overestimation of surface PM2.5 concentrations. With FINN1 emissions increased by a factor of 1.5 the model reasonably simulates PM2.5 concentrations in South America and AOD over Southeast Asia, but underestimates AOD over South America and Africa. The model with GFAS1 emissions better matches observed PM2.5 and AOD when emissions are increased by a factor of 3.4. The model with GFED3 emissions scaled by a factor of 1.5 reasonably simulates PM2.5 concentrations in South America, but requires a larger scaling factor to capture observed AOD in all regions. The model with GFED3 emissions poorly simulates observed seasonal variability of surface PM2.5 and AOD in regions where small fires dominate, providing independent evidence that GFED3 omits emissions from small fires. Seasonal variability of both PM2.5 and AOD is better simulated by the model using FINN1 and GFAS1 emissions. Detailed observations of the vertical profile of aerosol over biomass burning regions are required to better constrain emissions and modelled AOD.


2020 ◽  
Author(s):  
Mengying Bao ◽  
Yan-Lin Zhang ◽  
Fang Cao ◽  
Yu-Chi Lin ◽  
Yuhang Wang ◽  
...  

Abstract. Carbonaceous aerosols have great influence on the air quality, human health and climate change. Except for organic carbon (OC) and elemental carbon (EC), brown carbon (BrC), mainly originates from biomass burning, as a group of OC with strong absorption from the visible to near-ultraviolet wavelengths, makes a considerable contribution to global warming. Large amounts of studies have reported long-term observation of OC and EC concentrations throughout the word, but studies of BrC based on long-term observations are rather limited. In this study, we established a two-wavelength method (658 nm and 405 nm) applied in the Sunset thermo/optical carbon analyzer. Based on one-year observation, we firstly investigated the characteristics, meteorological impact and transport process of OC and EC. Due to BrC absorbs light at 405 nm more effectively than 658 nm, we defined the enhanced concentrations (dEC = EC405 nm−EC658 nm) and gave the possibility to provide an indicator of BrC. The receptor model and MODIS fire information were used to identify the presence of BrC aerosols. Our results showed that the carbonaceous aerosols concentrations were highest in winter and lowest in summer. Traffic emission was an important source of carbonaceous aerosols in Nanjing. Receptor model results showed that strong local emissions were found in OC and EC aerosols, however dEC aerosols were significantly affected by regional or long-range transport. The dEC / OC and OC / EC ratios showed similar diurnal patterns and the dEC / OC increased when the OC / EC ratios increased, indicating strong secondary sources or biomass burning contributions to dEC. Two biomass burning events both in summer and winter were analyzed and the results showed that the dEC concentrations were obvious higher in biomass burning days, however, no similar levels of the OC and EC concentrations were found both in biomass burning days and normal days in summer, suggesting that biomass burning emission made a great contribution to dEC and the sources of OC and EC were more complicated. Large number of open fire counts from the northwest and southwest areas of the study site were monitored in winter, significantly contributed to OC, EC and dEC. In addition, the near-by YRD area was one of the main potential source areas of dEC, suggesting that anthropogenic emissions could also be important sources of dEC. The results proved that dEC can be an indicator of BrC in biomass burning days. Our modified two-wavelength instrument provided more information than traditional single-wavelength thermo/optical carbon analyzer and gave a new idea about the measurement of BrC, the application of dEC data need to be further investigated.


Author(s):  
Sheng-Hsiang Wang ◽  
Hsiang-Yu Huang ◽  
Che-Hsuan Lin ◽  
Shantanu Kumar Pani ◽  
Neng-Huei Lin ◽  
...  

AbstractAerosol chemical components such as black carbon (BC) and brown carbon (BrC) regulate aerosol optical properties, which in turn drive the atmospheric radiative forcing estimations due to aerosols. In this study, we used the long-term measurements from AERONET (Aerosol Robotic Network) to better understand the aerosol types and composition with respect to their seasonal and spatial variabilities in peninsular Southeast Asia (PSEA, here defined as Vietnam, Cambodia, Thailand, Laos, and Myanmar). Two methods (i.e., aerosol type cluster and aerosol component retrieval) were applied to determine the aerosol type and chemical composition during the biomass-burning (BB) season. AERONET sites in northern PSEA showed a higher AOD (aerosol optical depth) compared to that of southern PSEA. Differences in land use pattern, geographic location, and weather regime caused much of the aerosol variability over PSEA. Lower single-scattering albedo (SSA) and higher fine-mode fraction (FMF) values were observed in February and March, suggesting the predominance of BB type aerosols with finer and stronger absorbing particles during the dry season. However, we also found that the peak BB month (i.e., March) in northern PSEA may not coincide with the lowest SSA once dust particles have mixed with the other aerosols. Furthermore, we investigated two severe BB events in March of 2014 and 2015, revealing a significant BrC fraction during BB event days. On high AOD days, although the BC fraction was high, the BrC fraction remained low due to lack of aerosol aging. This study highlights the dominance of carbonaceous aerosols in the PSEA atmosphere during the BB season, while also revealing that transported dust particles and BrC aerosol aging may introduce uncertainties into the aerosol radiative forcing calculation.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Jessie M. Dodge ◽  
Eva K. Strand ◽  
Andrew T. Hudak ◽  
Benjamin C. Bright ◽  
Darcy H. Hammond ◽  
...  

Abstract Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after the 2007 Egley Fire Complex in Oregon, USA. We also assessed short- and long-term fuel treatment impacts on field-measured attributes one and nine years post fire. Results One-year post-fire burn severity (dNBR) was lower in treated than in untreated sites across the Egley Fire Complex. Annual NBR trends showed that treated sites nearly recovered to pre-fire values four years post fire, while untreated sites had a slower recovery rate. Time since treatment and dNBR significantly predicted tree canopy and understory green vegetation cover in 2008, suggesting that tree canopy and understory vegetation cover increased in areas that were treated recently pre fire. Live tree density was more affected by severity than by pre-fire treatment in either year, as was dead tree density one year post fire. In 2008, neither treatment nor severity affected percent cover of functional groups (shrub, graminoid, forb, invasive, and moss–lichen–fungi); however, by 2016, shrub, graminoid, forb, and invasive cover were higher in high-severity burn sites than in low-severity burn sites. Total fuel loads nine years post fire were higher in untreated, high-severity burn sites than any other sites. Tree canopy cover and density of trees, saplings, and seedlings were lower nine years post fire than one year post fire across treatments and severity, whereas live and dead tree basal area, understory surface cover, and fuel loads increased. Conclusions Pre-fire fuel treatments effectively lowered the occurrence of high-severity wildfire, likely due to successful pre-fire tree and sapling density and surface fuels reduction. This study also quantified the changes in vegetation and fuels from one to nine years post fire. We suggest that low-severity wildfire can meet prescribed fire management objectives of lowering surface fuel accumulations while not increasing overstory tree mortality.


2012 ◽  
Vol 12 (2) ◽  
pp. 1083-1100 ◽  
Author(s):  
W. Trivitayanurak ◽  
P. I. Palmer ◽  
M. P. Barkley ◽  
N. H. Robinson ◽  
H. Coe ◽  
...  

Abstract. We use a nested version of the GEOS-Chem global 3-D chemistry transport model to better understand the composition and variation of aerosol over Borneo and the broader Southeast Asian region in conjunction with aircraft and satellite observations. Our focus on Southeast Asia reflects the importance of this region as a source of reactive organic gases and aerosols from natural forests, biomass burning, and food and fuel crops. We particularly focus on July 2008 when the UK BAe-146 research aircraft was deployed over northern Malaysian Borneo as part of the ACES/OP3 measurement campaign. During July 2008 we find using the model that Borneo (defined as Borneo Island and the surrounding Indonesian islands) was a net exporter of primary organic aerosol (42 kT) and black carbon aerosol (11 kT). We find only 13% of volatile organic compound oxidation products partition to secondary organic aerosol (SOA), with Borneo being a net exporter of SOA (15 kT). SOA represents approximately 19% of the total organic aerosol over the region. Sulphate is mainly from aqueous-phase oxidation (68%), with smaller contributions from gas-phase oxidation (15%) and advection into the regions (14%). We find that there is a large source of sea salt, as expected, but this largely deposits within the region; we find that dust aerosol plays only a relatively small role in the aerosol burden. In contrast to coincident surface measurements over Northern Borneo that find a pristine environment with evidence for substantial biogenic SOA formation we find that the free troposphere is influenced by biomass burning aerosol transported from the northwest of the Island and further afield. We find several transport events during July 2008 over Borneo associated with elevated aerosol concentrations, none of which coincide with the aircraft flights. We use MODIS aerosol optical depths (AOD) data and the model to put the July campaign into a longer temporal perspective. We find that Borneo is where the model has the least skill at reproducing the data, where the model has a negative bias of 76% and only captures 14% of the observed variability. This model performance reflects the small-scale island-marine environment and the mix of aerosol species, with the model showing more skill at reproducing observed AOD over larger continental regions such as China where AOD is dominated by one aerosol type. The model shows that AOD over Borneo is approximately evenly split between organic and sulphate aerosol with sea salt representing 10–20% during May–September; we find a similar breakdown over continental Southeast Asia but with less sea salt aerosol and more dust aerosol. In contrast, East China AOD is determined mainly by sulphate aerosol and a seasonal source of dust aerosol, as expected. Realistic sensitivity runs, designed to test our underlying assumptions about emissions and chemistry over Borneo, show that model AOD is most sensitive to isoprene emissions and organic gas-phase partitioning but all fail to improve significantly upon the control model calculation. This emphasises the multi-faceted dimension of the problem and the need for concurrent and coordinated development of BVOC emissions, and BVOC chemistry and organic aerosol formation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document