scholarly journals Dual role of FMN in flavodoxin function: Electron transfer cofactor and modulation of the protein–protein interaction surface

2010 ◽  
Vol 1797 (2) ◽  
pp. 262-271 ◽  
Author(s):  
Susana Frago ◽  
Isaias Lans ◽  
José A. Navarro ◽  
Manuel Hervás ◽  
Dale E. Edmondson ◽  
...  
Biochemistry ◽  
2005 ◽  
Vol 44 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Isabel Nogués ◽  
Manuel Hervás ◽  
José R. Peregrina ◽  
José A. Navarro ◽  
Miguel A. de la Rosa ◽  
...  

2012 ◽  
Vol 23 (4) ◽  
pp. 687-700 ◽  
Author(s):  
Ryohei Suzuki ◽  
Junko Y. Toshima ◽  
Jiro Toshima

Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein–protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain–containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.


2017 ◽  
Vol 8 (5) ◽  
pp. 903-912 ◽  
Author(s):  
Ainur Sharip ◽  
Diyora Abdukhakimova ◽  
Xiao Wang ◽  
Alexey Kim ◽  
Yevgeniy Kim ◽  
...  

2019 ◽  
Vol 100 (1-2) ◽  
pp. 47-58 ◽  
Author(s):  
Joe Collins ◽  
Kevin O’Grady ◽  
Sixue Chen ◽  
William Gurley

Microbiology ◽  
2006 ◽  
Vol 152 (11) ◽  
pp. 3383-3389 ◽  
Author(s):  
E. Vanterpool ◽  
F. Roy ◽  
W. Zhan ◽  
S. M. Sheets ◽  
L. Sangberg ◽  
...  

The authors have shown previously that the vimA gene, which is part of the bcp-recA-vimA operon, plays an important role in protease activation in Porphyromonas gingivalis. The gingipain RgpB proenzyme is secreted in the vimA-defective mutant P. gingivalis FLL92. An important question that is raised is whether the vimA gene product could directly interact with the proteases for their activation or regulate a pathway responsible for protease activation. To further study the mechanism(s) of VimA-dependent protease activation, the vimA gene product was further characterized. A 39 kDa protein consistent with the size of the predicted VimA protein was purified. In protein–protein interaction studies, the VimA protein was shown to interact with gingipains RgpA, RgpB and Kgp. Immune sera from mice immunized with P. gingivalis immunoreacted with the purified VimA protein. Taken together, these data suggest an interaction of VimA with the gingipains and further confirm the role of this protein in their regulation or maturation.


Sign in / Sign up

Export Citation Format

Share Document