scholarly journals Manganese superoxide dismutase and glutathione peroxidase-1 contribute to the rise and fall of mitochondrial reactive oxygen species which drive oncogenesis

2017 ◽  
Vol 1858 (8) ◽  
pp. 628-632 ◽  
Author(s):  
Dede N. Ekoue ◽  
Chenxia He ◽  
Alan M. Diamond ◽  
Marcelo G. Bonini
2020 ◽  
Vol 75 (2) ◽  
pp. 59-71
Author(s):  
MICHAŁ NOWAK ◽  
JUSTYNA LEŚNIOWSKA-NOWAK ◽  
MAGDALENA SOZONIUK

Within many different cytotoxic activities of heavy metals in plant cells, one of the most important is connected with reactive oxygen species (ROS) generation. Mechanism of plant cell defense against reactive oxygen species and free radicals has a comprehensive character. The aim of presented paper is characterization of changes in mitochondrial manganese superoxide dismutase (MnSOD) gene transcript level that occurred in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) seedlings during copper and manganese treatment. Our results show down-regulation of MnSOD expression in most cases after the oxidative burst evoked by copper excess. Manganese treatment, on the other hand, caused differential reaction of tested material indicating the substantial impact of cultivar genetic background in molecular response to the same stress-inducing conditions.


2001 ◽  
Vol 12 (12) ◽  
pp. 2683-2690 ◽  
Author(s):  
Christopher A. Davis ◽  
Harry S. Nick ◽  
Anupam Agarwal

ABSTRACT. Cisplatin is a potent chemotherapeutic agent that is used to treat many human malignancies. Unfortunately, in addition to side effects such as ototoxicity, anaphylaxis, and bone marrow suppression, a significant percentage of patients receiving cisplatin develop severe nephrotoxicity. Mitochondrial dysfunction that is mediated via the generation of reactive oxygen species has been implicated in the pathogenesis of cisplatin-induced renal injury. To address the mechanism, it was hypothesized that overexpression of antioxidant enzymes, such as mitochondria-localized manganese superoxide dismutase (MnSOD) or mitochondria-targeted catalase (mito-Cat), would be cytoprotective in cisplatin-induced cell injury. To this end, human MnSOD or a mito-Cat vector were stably transfected into human embryonic kidney 293 cells. Cells that overexpressed MnSOD exhibited significantly less cell rounding and detachment compared with both mito-Cat and vector controls after exposure to 20 μM cisplatin. Cell injury as assessed by DNA fragmentation and annexin V binding assays was significantly decreased in the cells that overexpressed MnSOD compared with vector alone and mito-Cat. In addition, elevated levels of MnSOD were strongly associated with increased clonogenic potential after cisplatin challenge. Thus, overexpression of MnSOD, and not catalase, protects against cisplatin-induced renal epithelial cell injury. These results demonstrate the importance of reactive oxygen species in the mechanism that underlies cisplatin-induced renal injury and specifically implicate the superoxide radical, and not hydrogen peroxide, as the mediator.


2020 ◽  
Vol 32 (2) ◽  
pp. 220
Author(s):  
E. Hicks ◽  
M. Mentler ◽  
B. D. Whitaker

Oxidative stress can have a negative effect on oocyte maturation during invitro production of pig embryos. Imbalance of reactive oxygen species and antioxidant levels can affect the progression of oocyte maturation up to the point of fertilization. Antioxidants are effective in maintaining more ideal reactive oxygen species levels, which help to protect oocytes from potential harmful effects of oxidative stress. Berries from the elder plant (Sambucus sp.) contain high levels of a broad spectrum of antioxidants. One of these antioxidants, cyanidin, when supplemented to maturation medium at 100μM concentrations, reduces reactive oxygen species formation and improves IVF and early embryonic development in pigs. However, changes in the enzyme mechanisms of action during oocyte maturation due to cyanidin supplementation are unknown. Therefore, the objective of this study was to characterise the intracellular oocyte enzyme mechanisms between oocytes supplemented with 100μM cyanidin during 40 to 44h of maturation (n=600) and oocytes without supplementation of cyanidin during maturation (n=558). At the end of maturation, oocytes were evaluated for either glutathione peroxidase (n=300), catalase (n=564), or superoxide dismutase (n=294) activities. Glutathione peroxidase activity was determined by following the rate of NADPH oxidation, catalase activity was determined by following the rate of hydrogen peroxide decomposition, and superoxide dismutase activity was determined by following the reduction rate of cytochrome c, utilising the xanthine-xanthine oxidase system. Data were analysed using ANOVA and Tukey's test. There were no significant differences between oocytes matured with 100μM cyanidin and those that were not when comparing glutathione peroxidase and superoxide dismutase activities. Supplementation of 100μM cyanidin to maturation medium increased (P<0.05) catalase activity in oocytes (0.78±0.15 units/oocyte) compared with no cyanidin supplementation (0.14±0.11 units/oocyte). These results indicate that supplementing 100μM cyanidin to the maturation medium of pig oocytes could reduce the negative effects of oxidative stress by increasing intracellular catalase activity during oocyte maturation.


2016 ◽  
Vol 54 (4) ◽  
pp. 438-447
Author(s):  
Havva Yıldız Seçkin ◽  
Göknur Kalkan ◽  
İlknur Bütün ◽  
Ali Akbaş ◽  
Yalçın Baş ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document