scholarly journals Non-selective cation channels, transient receptor potential channels and ischemic stroke

Author(s):  
J. Marc Simard ◽  
Kirill V. Tarasov ◽  
Volodymyr Gerzanich
2020 ◽  
Vol 21 (11) ◽  
pp. 4181 ◽  
Author(s):  
Dawid Jaślan ◽  
Julia Böck ◽  
Einar Krogsaeter ◽  
Christian Grimm

Transient receptor potential (TRP) or transient receptor potential channels are a highly diverse family of mostly non-selective cation channels. In the mammalian genome, 28 members can be identified, most of them being expressed predominantly in the plasma membrane with the exception of the mucolipins or TRPMLs which are expressed in the endo-lysosomal system. In mammalian organisms, TRPMLs have been associated with a number of critical endo-lysosomal functions such as autophagy, endo-lysosomal fusion/fission and trafficking, lysosomal exocytosis, pH regulation, or lysosomal motility and positioning. The related non-selective two-pore cation channels (TPCs), likewise expressed in endosomes and lysosomes, have also been found to be associated with endo-lysosomal trafficking, autophagy, pH regulation, or lysosomal exocytosis, raising the question why these two channel families have evolved independently. We followed TRP/TRPML channels and TPCs through evolution and describe here in which species TRP/TRPMLs and/or TPCs are found, which functions they have in different species, and how this compares to the functions of mammalian orthologs.


2017 ◽  
Vol 112 (3) ◽  
pp. 250a
Author(s):  
Young-Soo Kim ◽  
Chan Sik Hong ◽  
Sang Weon Lee ◽  
Joo Hyun Nam ◽  
Byung Joo Kim

Physiology ◽  
2021 ◽  
Vol 36 (5) ◽  
pp. 292-306
Author(s):  
Heather A. Drummond

Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.


Sign in / Sign up

Export Citation Format

Share Document