scholarly journals Differentiation-inducing factor-1 potentiates adipogenic differentiation and attenuates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells

2021 ◽  
Vol 1868 (2) ◽  
pp. 118909
Author(s):  
Shin Ishikane ◽  
Eigo Ikushima ◽  
Kazunobu Igawa ◽  
Katsuhiko Tomooka ◽  
Fumi Takahashi-Yanaga
2011 ◽  
Vol 23 (1) ◽  
pp. 253 ◽  
Author(s):  
E. Monaco ◽  
M. Bionaz ◽  
A. Lima ◽  
W. L. Hurley ◽  
M. B. Wheeler

Previous data support adipose-derived stem cells as an alternative to bone marrow as a source of adult stem cells for therapeutic purposes. The aim of the present study was to directly compare the transcriptome of adipose-derived (ADSC) and bone marrow-derived (BMSC) mesenchymal stem cells prior to differentiation and during in vitro osteogenic and adipogenic differentiation. The ADSC and BMSC were harvested from 3 adult pigs and differentiated in vitro into adipocytes and osteocytes for up to 4 weeks. Prior to differentiation and at differentiation day 2, 7, and 21, cells were harvested and RNA extracted for transcriptomics analysis by a 13 263 oligo 70-mers array (Sus scrofa AROS V1.0 with extension; Operon). Data were normalized by Lowess and statistical analysis was run using ANOVA with Benjamini-Hochberg false discovery rate (FDR) correction. Data mining was carried out using Ingenuity Pathway Analysis and David. Using an FDR of <0.05 for overall tissue effect and a post-hoc correction of P < 0.001, we observed 65 differentially expressed genes (DEG) between ADSC and BMSC before starting differentiation (0.66% of unique genes in the array). Functional analysis uncovered significant enrichment of extracellular matrix genes with direct roles in cell adhesion, migration, movement, and morphology. When the interaction cell type × differentiation × time was assessed, we observed >2 000 DEG with an FDR <0.05. This large number was mostly due to time effects. When pair-wise comparisons between cell types for each time point during the same differentiation were performed (post-hoc P < 0.001), we observed a strikingly low number of DEG. The number of DEG was lower between cell types in osteogenic (<100 DEG) compared with adipogenic (<200 DEG) differentiation. We observed significant enrichment (FDR-corrected P-value cut-off <0.05) of functions related to metabolism, antigen presentation, angiogenesis, and cell cycle in both differentiation conditions. We also observed an overall greater induction of the enriched functions in ADSC and a decrease in BMSC during adipogenic differentiation and the opposite during osteogenic differentiation except for metabolism, which appeared to be larger in ADSC in all cases. Among the significant enriched functions of DEG between the 2 differentiations, we observed enrichment of genes involved in metabolism, cell death, cell-to-cell signalling, and antigen presentation in ADSC during adipogenic compared with osteogenic differentiation. In BMSC we observed enrichment of functions related to cell death, antigen presentation, and lipid metabolism in osteogenic v. adipogenic differentiation. Overall data uncovered a high similarity at the transcriptional level between ADSC and BMSC both prior to differentiation and during differentiation. Those data support ADSC being particularly similar to BMSC. This work was support by the Illinois Regenerative Medicine Institute (IDPH # 63080017).


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1454-1454 ◽  
Author(s):  
Weijie Cao ◽  
Lizhen Liu ◽  
Xiaoyu Lai ◽  
Xiaohong Yu ◽  
He Huang

Abstract Abstract 1454 Poster Board I-477 Introduction Mycophenolate mofetil is now widely used in transplantation as a potent immunosuppressant, whose active metabolite is mycophenolic acid (MPA). MPA inhibits de novo purine biosynthesis by reversible, noncompetitive inhibition of inosine monophosphate dehydrogenase (IMPDH). The inhibition of IMPDH in lymphocytes reduces intracellular guanine nucleotide pools, thus arrests lymphocytes proliferation. Recently investigators reported the antiproliferative effects of MPA on fibroblasts, smooth muscle cells and endothelial cells, but there is no reports of the effects of MPA on human bone marrow-derived mesenchymal stem cells (MSCs). Here we examined the effects of MPA on the proliferation and differentiation of human bone marrow-derived mesenchymal stem cells. Methods Bone marrow aspirates were obtained from healthy volunteers after informed consent, and MSCs were expanded from bone marrow mononuclear cells by discarding non-adherent cells. For proliferation and survival assays, MSCs were treated with MPA at the concentration of 1μM, 10μM, 50μM, and 100μM. Cell proliferation was analyzed using CCK-8 method (Dojindo). Cell viability was assessed by trypan blue exclusion. Apoptosis was detected by PI/Annexin V assay kit (Invitrogen). To assess the effects of MPA on MSCs differentiation, osteogenic differentiation and adipogenic differentiation were induced in the presence of MPA. For the detection of osteogenic differentiation, the deposited minerals was stained with silver by the method of von Kossa and Ca2+ contents was quantified with calcium colorimetric assay kit (Biovision). Adipogenic differentiation was analyzed by Oil Red O staining and Oil Red O staining extraction. Results In the range of 1μM to 100μM, MPA caused a significant subdued proliferation rate of MSCs in a concentration- and time-dependent manner. After 7d of incubation with MPA at the concentration of 1μM, 10μM, 50μM, and 100μM, the proliferation rate was reduced to 65.33±11.03%, 24±3.74%, 15.33±4.03%, and 15.33±6.94% respectively (P<0.01). Adding guanosine (100μM) to the culture restored the proliferation rate (P<0.01) indicating that MPA exerted antiproliferative effects by guanosine depletion. Trypan blue staining showed that there was no statistically significant difference in the ratio of living cells between MPA treated cells and the control group (P>0.05), and PI/Annexin V staining showed no apoptosis induce by MPA. Von Kossa stainnging indicated that treatment with MPA reduced Ca2+ deposition during osteogenic differentiation of MSCs, and Ca2+ quantification further confirmed that MPA inhibited osteogenic differentiation in a concentration-dependent manner. Ca2+ quantification was 78.43±12.79 μg/well and 22.8±6.58 μg/well respectively at the concentration of 10μM and 100μM of MPA, which were significantly lower than the control group(118.33±12.50ug/well, P<0.05). Oil Red O staining and Quantification of lipid contents showed that MPA had no effect on lipid production during adipogenic differentiation. Conclusion Our study demonstrated that MPA inhibited the proliferation of MSCs by guanosine depletion, and also inhibited the osteogenic differentiation in a concentration-dependent manner. However, MPA had no impact on adipogenic differentiation in vitro. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 5 (7) ◽  
pp. 1353-1362 ◽  
Author(s):  
Jingchao Li ◽  
Ying Chen ◽  
Yingjun Yang ◽  
Naoki Kawazoe ◽  
Guoping Chen

Sub-10 nm Au NPs with an average size of 4 nm (Au4-mPEG NPs) had a promotive effect on the adipogenic differentiation and an inhibitive effect on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) due to the highly induced ROS level.


2021 ◽  
Author(s):  
Wei Lin ◽  
Zhipeng Chen ◽  
Xiaoyi Mo ◽  
Shengli Zhao ◽  
Zhenxing Wen ◽  
...  

Abstract Background: The imbalance between osteogenic and adipogenic differentiation of Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) is involved in the occurrence and development of Osteoporosis (OP). Previous studies have indicated the potential of phosphatase and actin regulatory factor 1 (Phactr1) in regulating osteogenic and adipogenic differentiation of BMSCs.The present study aims to investigate The Function and Mechanism of Phactr1 in regulating osteogenic and adipogenic Differentiation of BMSCs.Results: Phactr1 increased in both bone and adipose tissue of OP rats. During osteogenic differentiation , Phactr1 decreased and active RhoA, ROCK2 increased, while overexpression Phactr1 inhibits the increase of Runx2. Phactr1 increased and active RhoA decreased, ROCK2 did not changed during adipogenic differentiation, knockdown Phactr1 inhibits the increase of C/EBPα. Phactr1 and ROCK2 were combined in osteogenic differentiation, but not in adipogenic differentiation. By using KD025, the decrease of Phactr1 and the increase of Runx2 were inhibited respectively in osteogenic differentiation. Meanwhile, when ROCK2 was inhibited, Phactr1,C/EBPα were significantly increased in adipogenic differentiation.Conclusions: These findings indicated that Phactr1 negatively regulates bone mass by inhibiting osteogenesis and promoting adipogenesis of BMSCs by activating RhoA/ROCK2.


2018 ◽  
Vol 7 (4) ◽  
pp. 289-297 ◽  
Author(s):  
A. Sanghani-Kerai ◽  
L. Osagie-Clouard ◽  
G. Blunn ◽  
M. Coathup

Objectives This study aimed to assess the effect of age and osteoporosis on the proliferative and differentiating capacity of bone-marrow-derived mesenchymal stem cells (MSCs) in female rats. We also discuss the role of these factors on expression and migration of cells along the C-X-C chemokine receptor type 4 (CXCR-4) / stromal derived factor 1 (SDF-1) axis. Methods Mesenchymal stem cells were harvested from the femora of young, adult, and osteopenic Wistar rats. Cluster of differentiation (CD) marker and CXCR-4 expression was measured using flow cytometry. Cellular proliferation was measured using Alamar Blue, osteogenic differentiation was measured using alkaline phosphatase expression and alizarin red production, and adipogenic differentiation was measured using Oil red O. Cells were incubated in Boyden chambers to quantify their migration towards SDF-1. Data was analyzed using a Student’s t-test, where p-values < 0.05 were considered significant. Results CD marker expression and proliferation of the MSCs from the three groups was not significantly different. The young MSCs demonstrated significantly increased differentiation into bone and fat and superior migration towards SDF-1. The migration of SDF-1 doubled with young rats compared with the adult rats (p = 0.023) and it was four times higher when compared with cells isolated from ovariectomized (OVX) osteopenic rats (p = 0.013). Conclusion Young rat MSCs are significantly more responsive to osteogenic differentiation, and, contrary to other studies, also demonstrated increased adipogenic differentiation compared with cells from adult and ostopenic rats. Young-rat-derived cells also showed superior migration towards SDF-1 compared with MSCs from OVX and adult control rats. Cite this article: A. Sanghani-Kerai, L. Osagie-Clouard, G. Blunn, M. Coathup. The influence of age and osteoporosis on bone marrow stem cells from rats. Bone Joint Res 2018;7:289–297. DOI: 10.1302/2046-3758.74.BJR-2017-0302.R1.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1923-1923
Author(s):  
Fernando Ugarte ◽  
Martin F. Ryser ◽  
Sebastian Thieme ◽  
Martin Bornhaeuser ◽  
Sebastian Brenner

Abstract Notch, expressed on hematopoietic progenitors plays a crucial role in hematopoiesis. Mesenchymal stem cells (MSC) express both, Notch and its ligand Jagged and are known to support self renewal of hematopoietic progenitors via cell-cell contact and cytokine secretion. The Jagged/Notch signaling pathway has been implicated in the differentiation process of MSC, however it is not completely understood and current observations are contradictory. In order to analyze the effect of Notch signaling on human MSC differentiation we constructed lentiviral vectors that contained either the GFP-marker gene, hJagged1 IRES GFP, hNotch1 intracellular domain (NICD) IRES GFP or a gene fusion between dominant negative Mastermind1 (MAML1dn - inhibitor of Notch signaling) and the Cherry reporter gene. Primary hMSC that were obtained from bone marrow of 3 different donors were transduced with respective lentivirus vectors to greater than 98%. After exposure to adipogenic and osteogenic differentiation stimuli hMSC differentiation was quantified by Alizarin red or oil red staining, alkaline phosphatase (AP) activity and expression levels of adipogenic or osteogenic markers by Real-time PCR. Jagged1 transduced hMSC demonstrated enhanced calcium phosphate deposits and enhanced AP activity and expression levels in osteogenic differentiation medium, while adipogenic differentiation was strongly inhibited as quantified by oil red staining and low mRNA expression of genes upregulated during adipogenic differentiation (pprY, Fabp4). Similarly, overexpression of NICD induced strong and rapid osteogenic differentiation while inhibiting adipogenic differentiation and reducing cell viability. Moreover, NICD overexpression upregulates the expression of endogenous Jagged1 up to 5-fold. Inhibition of Notch signaling via overexpression of MAML1dn partially blocked the effect of hJagged1 and NICD in co-transduction experiments. In another approach MSC samples obtained from 20 donors with various osteogenic differentiation potential as measured by AP activity were analyzed for Notch1 and Jagged1 expression. While there was no correlation between AP activity and Notch1 levels we observed a significant positive correlation for AP activity and Jagged1 expression. In summary, our data strongly suggest that increased Jagged/Notch signaling enhances the osteogenic differentiation of hMSC while inhibiting their adipogenic fate.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Aofei Yang ◽  
Chaochao Yu ◽  
Fang You ◽  
Chengjian He ◽  
Zhanghua Li

The current treatment strategies for osteoporosis (OP) involve promoting osteogenic differentiation and inhibiting adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). According to a theory of traditional Chinese medicine (TCM), the kidneys contain an “essence” that regulate bone metabolism and generate marrow. Kidney disorders are therefore considered to be a major cause of OP as per the principles of TCM, which recommends kidney-tonifying treatments for OP. The Zuogui pill (ZGP) is a classic kidney-tonifying medication that effectively improves OP symptoms. Studies have shown that ZGP can promote the osteogenic differentiation of BMSCs, providing scientific evidence for the TCM theory linking kidneys with bone metabolism. In this review, we have provided an overview of recent studies that examined the underlying mechanisms of ZGP mediated regulation of BMSC osteogenic and adipogenic differentiation.


Sign in / Sign up

Export Citation Format

Share Document