scholarly journals Regulation and activity of CaTrk1, CaAcu1 and CaHak1, the three plasma membrane potassium transporters in Candida albicans

2021 ◽  
Vol 1863 (1) ◽  
pp. 183486
Author(s):  
Francisco J. Ruiz-Castilla ◽  
Jan Bieber ◽  
Gabriel Caro ◽  
Carmen Michán ◽  
Hana Sychrova ◽  
...  
2015 ◽  
Vol 44 (1-2) ◽  
pp. 77-90 ◽  
Author(s):  
Barbara Chudzik ◽  
Mateusz Koselski ◽  
Aleksandra Czuryło ◽  
Kazimierz Trębacz ◽  
Mariusz Gagoś

2012 ◽  
Vol 444 (3) ◽  
pp. 497-502 ◽  
Author(s):  
Linghuo Jiang ◽  
Joerg Alber ◽  
Jihong Wang ◽  
Wei Du ◽  
Xuexue Yang ◽  
...  

Candida albicans RCH1 (regulator of Ca2+ homoeostasis 1) encodes a protein of ten TM (transmembrane) domains, homologous with human SLC10A7 (solute carrier family 10 member 7), and Rch1p localizes in the plasma membrane. Deletion of RCH1 confers hypersensitivity to high concentrations of extracellular Ca2+ and tolerance to azoles and Li+, which phenocopies the deletion of CaPMC1 (C. albicans PMC1) encoding the vacuolar Ca2+ pump. Additive to CaPMC1 mutation, lack of RCH1 alone shows an increase in Ca2+ sensitivity, Ca2+ uptake and cytosolic Ca2+ level. The Ca2+ hypersensitivity is abolished by cyclosporin A and magnesium. In addition, deletion of RCH1 elevates the expression of CaUTR2 (C. albicans UTR2), a downstream target of the Ca2+/calcineurin signalling. Mutational and functional analysis indicates that the Rch1p TM8 domain, but not the TM9 and TM10 domains, are required for its protein stability, cellular functions and subcellular localization. Therefore Rch1p is a novel regulator of cytosolic Ca2+ homoeostasis, which expands the functional spectrum of the vertebrate SLC10 family.


Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2641-2651 ◽  
Author(s):  
Amparo Galán ◽  
Manuel Casanova ◽  
Amelia Murgui ◽  
Donna M. MacCallum ◽  
Frank C. Odds ◽  
...  

Immunoscreening of a Candida albicans cDNA library with a polyclonal germ-tube-specific antibody (pAb anti-gt) resulted in the isolation of a gene encoding a lysine/glutamic-acid-rich protein, which was consequently designated KER1. The nucleotide and deduced amino acid sequences of this gene displayed no significant homology with any other known sequence. KER1 encodes a 134 kDa lysine (14·5 %)/glutamic acid (16·7 %) protein (Ker1p) that contains two potential transmembrane segments. KER1 was expressed in a pH-conditional manner, with maximal expression at alkaline pH and lower expression at pH 4·0, and was regulated by RIM101. A Δker1/Δker1 null mutant grew normally but was hyperflocculant under germ-tube-inducing conditions, yet this behaviour was also observed in stationary-phase cells grown under other incubation conditions. Western blotting analysis of different subcellular fractions, using as a probe a monospecific polyclonal antibody raised against a highly antigenic domain of Ker1p (pAb anti-Ker1p), revealed the presence of a 134 kDa band in the purified plasma-membrane fraction from the wild-type strain that was absent in the homologous preparation from Δker1/Δker1 mutant. The pattern of cell-wall protein and mannoprotein species released by digestion with β-glucanases, reactive towards pAbs anti-gt and anti-Ker1p, as well as against concanavalin A, was also different in the Δker1/Δker1 mutant. Mutant strains also displayed an increased cell-surface hydrophobicity and sensitivity to Congo red and Calcofluor white. Overall, these findings indicate that the mutant strain was affected in cell-wall composition and/or structure. The fact that the ker1 mutant had attenuated virulence in systemic mouse infections suggests that this surface protein is also important in host–fungus interactions.


1991 ◽  
Vol 173 (21) ◽  
pp. 6826-6836 ◽  
Author(s):  
B C Monk ◽  
M B Kurtz ◽  
J A Marrinan ◽  
D S Perlin

2002 ◽  
Vol 297 (4) ◽  
pp. 885-889 ◽  
Author(s):  
Dong Gun Lee ◽  
Yoonkyung Park ◽  
Pyoung Il Kim ◽  
Hye Gwang Jeong ◽  
Eun-Rhan Woo ◽  
...  

2010 ◽  
Vol 391 (1) ◽  
Author(s):  
Enno C.I. Veerman ◽  
Marianne Valentijn-Benz ◽  
Wim van't Hof ◽  
Kamran Nazmi ◽  
Jan van Marle ◽  
...  

Abstract The mechanism of action of phytosphingosine (PHS), a member of the sphingosine family which has candidacidal activity when added externally, was investigated. Previously, it has been reported that the fungicidal activity of PHS is based on the induction of caspase-independent apoptosis. In contrast, we found that addition of PHS causes a direct permeabilization of the plasma membrane of yeast, highlighted by the influx of the membrane probe propidium iodide, and the efflux of small molecules (i.e., adenine nucleotides) as well as large cellular constituents such as proteins. Freeze-fracture electron microscopy revealed that PHS treatment causes severe damage of the plasma membrane of the cell, which seems to have lost its integrity completely. We also found that PHS reverts the azide-induced insensitivity to histatin 5 (Hst5) of Candida albicans. In a previous study, we had found that the decreased sensitivity to Hst5 of energy-depleted cells is due to rigidification of the plasma membrane, which could be reverted by the membrane fluidizer benzyl alcohol. In line with the increased membrane permeabilization and ultrastructural damage, this reversal of the azide-induced insensitivity by PHS also points to a direct interaction between PHS and the cytoplasmic membrane of C. albicans.


1989 ◽  
Vol 35 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Nicole Benhamou

Aplysia gonad lectin, isolated from the mollusc Aplysia depilans, was successfully conjugated to colloidal gold and used for ultrastructural detection of galacturonic acids in some pathogenic fungi. These sugar residues were found to occur in the fibrillar sheath surrounding hyphal cells of Ascocalyx abietina and in intravacuolar dense inclusions of this fungus spores. In hyphae and spores of Ophiostoma ulmi, galacturonic acids were detected mainly in the outermost wall layers. In contrast, these saccharides appeared associated with the innermost wall layers and especially the plasma membrane of Verticillium albo-atrum cells. Galacturonic acids were found to be absent in cells of Fusarium oxysporum f.sp. radicis-lycopersici and Candida albicans. These cytochemical data indicate therefore that a heterogeneity in wall composition exists between ascomycete fungi. The significance of the presence of galacturonic acids in the cell walls of certain fungi is still open to question.Key words: galacturonic acid, fungi, gold labeling, Aplysia depilans gonad lectin.


Sign in / Sign up

Export Citation Format

Share Document