Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning

2016 ◽  
Vol 298 ◽  
pp. 261-267 ◽  
Author(s):  
David González-Tapia ◽  
Nestor I. Martínez-Torres ◽  
Marisela Hernández-González ◽  
Miguel Angel Guevara ◽  
Ignacio González-Burgos
2004 ◽  
Vol 91 (3) ◽  
pp. 1171-1182 ◽  
Author(s):  
Zhong-wei Zhang

Layer V pyramidal neurons in the rat medial prefrontal cortex (PFC) were examined with whole cell patch-clamp recording in acute slices from postnatal day 1 (P1) to P36. In the first few days after birth, layer V pyramidal neurons had low resting potentials, high-input resistance, and long membrane time constant. During the next 2 wk, the resting potential shifted by -14 mV, while the input resistance and time constant decreased by 15- and 4-fold, respectively. Between P3 and P21, the surface area of the cell body doubled, while the total lengths of apical and basal dendrites increased by 5- and 13-fold, respectively. Action potentials (APs) were observed at all aged tested. The peak amplitude of APs increased by 30 mV during the first 3 wk, while AP rise time and half-maximum duration shortened significantly. Compared with neurons at P21 or older, neurons in the first week required much smaller currents to reach their maximum firing frequencies, but the maximum frequencies were lower than those at older ages. Stimulation of layer II/III induced monosynaptic responses in neurons older than P5. Paired-pulse responses showed a short-term depression at P7, which shifted progressive to facilitation at older ages. These results demonstrate that, similar to other neurons in the brain, layer V pyramidal neurons in the PFC undergo a period of rapid development during the first 3 wk after birth. These findings suggest that the intrinsic properties of neurons and the properties of synaptic inputs develop concomitantly during early life.


2012 ◽  
Vol 1470 ◽  
pp. 1-10 ◽  
Author(s):  
Dulce A. Velázquez-Zamora ◽  
David González-Tapia ◽  
Myrna M. González-Ramírez ◽  
Mario E. Flores-Soto ◽  
Eduardo Vázquez-Valls ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Christopher A. Chapleau ◽  
Elena Maria Boggio ◽  
Gaston Calfa ◽  
Alan K. Percy ◽  
Maurizio Giustetto ◽  
...  

Alterations in dendritic spines have been documented in numerous neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, an X chromosome-linked disorder associated with mutations inMECP2, is the leading cause of intellectual disabilities in women. Neurons inMecp2-deficient mice show lower dendritic spine density in several brain regions. To better understand the role of MeCP2 on excitatory spine synapses, we analyzed dendritic spines of CA1 pyramidal neurons in the hippocampus ofMecp2tm1.1Jaemale mutant mice by either confocal microscopy or electron microscopy (EM). At postnatal-day 7 (P7), well before the onset of RTT-like symptoms, CA1 pyramidal neurons from mutant mice showed lower dendritic spine density than those from wildtype littermates. On the other hand, at P15 or later showing characteristic RTT-like symptoms, dendritic spine density did not differ between mutant and wildtype neurons. Consistently, stereological analyses at the EM level revealed similar densities of asymmetric spine synapses in CA1stratum radiatumof symptomatic mutant and wildtype littermates. These results raise caution regarding the use of dendritic spine density in hippocampal neurons as a phenotypic endpoint for the evaluation of therapeutic interventions in symptomaticMecp2-deficient mice. However, they underscore the potential role of MeCP2 in the maintenance of excitatory spine synapses.


2002 ◽  
Vol 88 (5) ◽  
pp. 2834-2845 ◽  
Author(s):  
David Tsay ◽  
Rafael Yuste

Two remarkable aspects of pyramidal neurons are their complex dendritic morphologies and the abundant presence of spines, small structures that are the sites of excitatory input. Although the channel properties of the dendritic shaft membrane have been experimentally probed, the influence of spine properties in dendritic signaling and action potential propagation remains unclear. To explore this we have performed multi-compartmental numerical simulations investigating the degree of consistency between experimental data on dendritic channel densities and backpropagation behavior, as well as the necessity and degree of influence of excitable spines. Our results indicate that measured densities of Na+ channels in dendritic shafts cannot support effective backpropagation observed in apical dendrites due to suprathreshold inactivation. We demonstrate as a potential solution that Na+ channels in spines at higher densities than those measured in the dendritic shaft can support extensive backpropagation. In addition, clustering of Na+ channels in spines appears to enhance their effect due to their unique morphology. Finally, we show that changes in spine morphology significantly influence backpropagation efficacy. These results suggest that, by clustering sodium channels, spines may serve to control backpropagation.


2020 ◽  
Vol 14 ◽  
Author(s):  
Lianyan Huang ◽  
Hang Zhou ◽  
Kai Chen ◽  
Xiao Chen ◽  
Guang Yang

Aging is accompanied by a progressive decrease in learning and memory function. Synaptic loss, one of the hallmarks of normal aging, likely plays an important role in age-related cognitive decline. But little is known about the impact of advanced age on synaptic plasticity and neuronal function in vivo. In this study, we examined the structural dynamics of postsynaptic dendritic spines as well as calcium activity of layer 5 pyramidal neurons in the cerebral cortex of young and old mice. Using transcranial two-photon microscopy, we found that in both sensory and motor cortices, the elimination rates of dendritic spines were comparable between young (3–5 months) and mature adults (8–10 months), but seemed higher in old mice (>20 months), contributing to a reduction of total spine number in the old brain. During the process of motor learning, old mice compared to young mice had fewer new spines formed in the primary motor cortex. Motor training-evoked somatic calcium activity in layer 5 pyramidal neurons of the motor cortex was also lower in old than young mice, which was associated with the decline of motor learning ability during aging. Together, these results demonstrate the effects of aging on learning-dependent synapse remodeling and neuronal activity in the living cortex and suggest that synaptic deficits may contribute to age-related learning impairment.


2010 ◽  
Vol 1 (3) ◽  
Author(s):  
Mihovil Mladinov ◽  
Davor Mayer ◽  
Luka Brčić ◽  
Elizabeth Wolstencroft ◽  
Nguyen Man ◽  
...  

AbstractThe dopaminergic system is of crucial importance for understanding human behavior and the pathogenesis of many psychiatric and neurological conditions. The majority of studies addressing the localization of dopamine receptors (DR) examined the expression of DR in neurons, while its expression, precise anatomical localization and possible function in glial cells have been largely neglected. Here we examined the expression of D2-like family of DR in neuronal and glial cells in the normal human brain using immunocytochemistry and immunofluorescence. Tissue samples from the right orbitomedial (Brodmann’s areas 11/12), dorsolateral (areas 9/46) and dorsal medial (area 9) prefrontal cortex were taken during autopsy from six subjects with no history of neurological or psychiatric disorders, formalin-fixed, and embedded in paraffin. The sections were stained using novel anti-DRD2, anti-DRD3, and anti-DRD4 monoclonal antibodies. Adjacent sections were labeled with an anti-GFAP (astroglial marker) and an anti-CD68 antibody (macrophage/microglial marker). The pyramidal and non-pyramidal cells of all three regions analyzed had strong expression of DRD2 and DRD4, whereas DRD3 were very weakly expressed. DRD2 were more strongly expressed in layer III compared to layer V pyramidal neurons. In contrast, DRD4 receptors had a stronger expression in layer V neurons. The most conspicuous finding was the strong expression of DRD2, but not DRD3 or DRD4, receptors in the white matter fibrous astrocytes and in layer I protoplasmic astrocytes. Weak DRD2-immunoreactivity was also observed in protoplasmic astrocytes in layers III and V. These results suggest that DR-expressing astrocytes directly participate in dopaminergic transmission of the human prefrontal cortex.


Sign in / Sign up

Export Citation Format

Share Document