Normobaric oxygen treatment improves neuronal survival functional recovery and axonal plasticity after newborn hypoxia-ischemia

2020 ◽  
Vol 379 ◽  
pp. 112338
Author(s):  
Taha Kelestemur ◽  
Mustafa C. Beker ◽  
Ahmet B. Caglayan ◽  
Berrak Caglayan ◽  
Serdar Altunay ◽  
...  
2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S444-S444 ◽  
Author(s):  
Kristin M Noppens ◽  
J Regino Perez-Polo ◽  
David K Rassin ◽  
Karin N Westlund ◽  
Roderic Fabian ◽  
...  

2020 ◽  
Vol 6 (41) ◽  
pp. eabc5702
Author(s):  
Irene Sánchez-Morán ◽  
Cristina Rodríguez ◽  
Rebeca Lapresa ◽  
Jesús Agulla ◽  
Tomás Sobrino ◽  
...  

Failure of neurons to efficiently repair DNA double-strand breaks (DSBs) contributes to cerebral damage after stroke. However, the molecular machinery that regulates DNA repair in this neurological disorder is unknown. Here, we found that DSBs in oxygen/glucose-deprived (OGD) neurons spatiotemporally correlated with the up-regulation of WRAP53 (WD40-encoding p53-antisense RNA), which translocated to the nucleus to activate the DSB repair response. Mechanistically, OGD triggered a burst in reactive oxygen species that induced both DSBs and translocation of WRAP53 to the nucleus to promote DNA repair, a pathway that was confirmed in an in vivo mouse model of stroke. Noticeably, nuclear translocation of WRAP53 occurred faster in OGD neurons expressing the Wrap53 human nonsynonymous single-nucleotide polymorphism (SNP) rs2287499 (c.202C>G). Patients carrying this SNP showed less infarct volume and better functional outcome after stroke. These results indicate that WRAP53 fosters DNA repair and neuronal survival to promote functional recovery after stroke.


2012 ◽  
Vol 31 (02) ◽  
pp. 179-184 ◽  
Author(s):  
Zuzana Tatarkova ◽  
Ivan Engler ◽  
Andrea Calkovska ◽  
Daniela Mokra ◽  
Anna Drgova ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamid Abbasi ◽  
Paul P. Drury ◽  
Christopher A. Lear ◽  
Alistair J. Gunn ◽  
Joanne O. Davidson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document