Functional study of Capsicum annuum fatty acid desaturase 1 cDNA clone induced by Tobacco mosaic virus via microarray and virus-induced gene silencing

2007 ◽  
Vol 362 (3) ◽  
pp. 554-561 ◽  
Author(s):  
Ki-Jeong Kim ◽  
Jee Hyuck Lim ◽  
Sanghyeob Lee ◽  
Young Jin Kim ◽  
Soo Bok Choi ◽  
...  
2004 ◽  
Vol 82 (3) ◽  
pp. 297-303 ◽  
Author(s):  
Yang Ju Im ◽  
Mi Seong Kim ◽  
Kwang Yeol Yang ◽  
Yong Hwan Kim ◽  
Kyoungwhan Back ◽  
...  

Membrane lipids in higher plants contain a high proportion of trienoic fatty acids. ω-3 Fatty acid desaturases act on membrane lipids to catalyze the formation of trienoic acids. We isolated a wound-inducible Arabidopsis plastid ω-3 fatty acid desaturase (fad7) gene, and generated transgenic tobacco plants constitutively expressing the antisense fad7 RNA. Selected transgenic lines showed significant reductions in the content of trienoic fatty acids compared with control plants. The transgenic lines showed enhanced susceptibility against Tobacco mosaic virus infection, where necrotic lesions with brown halos developed much earlier and were larger in the transgenic lines than in control plants. After Tobacco mosaic virus infection, expression and protein accumulations of the wound-inducible protein kinase WIPK, as well as defense-response gene expressions such as lipoxygenase (lox) and defensin (pdf1.2), were retarded in the transgenic lines compared with control plants. Increased susceptibility of the transgenic lines was also demonstrated by infections with Pseudomonas syringae pv. tabaci (van Hall) Ash et al., which caused wildfire disease, and with a powdery mildew fungus (Erysiphe cichoracearum DC). These findings support the concept that trienoic fatty acids are involved in plant defense signaling.Key words: ω-3 fatty acid desaturase, linolenic acid, Nicotiana tabacum 'Xanthi', Pseudomonas syringae pv. tabaci, powdery mildew fungus, Tobacco mosaic virus.


2008 ◽  
Vol 21 (12) ◽  
pp. 1539-1548 ◽  
Author(s):  
Phillip A. Harries ◽  
Karuppaiah Palanichelvam ◽  
Sumana Bhat ◽  
Richard S. Nelson

The Tobacco mosaic virus (TMV) 126-kDa protein is a suppressor of RNA silencing previously shown to delay the silencing of transgenes in Nicotiana tabacum and N. benthamiana. Here, we demonstrate that expression of a 126-kDa protein–green fluorescent protein (GFP) fusion (126-GFP) in N. tabacum increases susceptibility to a broad assortment of viruses, including Alfalfa mosaic virus, Brome mosaic virus, Tobacco rattle virus (TRV), and Potato virus X. Given its ability to enhance TRV infection in tobacco, we tested the effect of 126-GFP expression on TRV-mediated virus-induced gene silencing (VIGS) and demonstrate that this protein can enhance silencing phenotypes. To explain these results, we examined the poorly understood effect of suppressor dosage on the VIGS response and demonstrated that enhanced VIGS corresponds to the presence of low levels of suppressor protein. A mutant version of the 126-kDa protein, inhibited in its ability to suppress silencing, had a minimal effect on VIGS, suggesting that the suppressor activity of the 126-kDa protein is indeed responsible for the observed dosage effects. These findings illustrate the sensitivity of host plants to relatively small changes in suppressor dosage and have implications for those interested in enhancing silencing phenotypes in tobacco and other species through VIGS.


2013 ◽  
Vol 35 (5) ◽  
pp. 811-823 ◽  
Author(s):  
Hernan J. Villanueva-Alonzo ◽  
Rosa Y. Us-Camas ◽  
Luisa A. López-Ochoa ◽  
Dominique Robertson ◽  
Orlene Guerra-Peraza ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuh Tzean ◽  
Ming-Chi Lee ◽  
Hsiao-Hsuan Jan ◽  
Yi-Shu Chiu ◽  
Tsui-Chin Tu ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Decai Tuo ◽  
Peng Zhou ◽  
Pu Yan ◽  
Hongguang Cui ◽  
Yang Liu ◽  
...  

Abstract Background Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. Results In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. Conclusions This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.


2020 ◽  
Author(s):  
Xuetong Yang ◽  
Jiali Ye ◽  
Fuqiang Niu ◽  
Yi Feng ◽  
Xiyue Song

Abstract Background: Environment-sensitive genic male sterility is of vital importance to hybrid vigor in crop production and breeding, therefore, it is meaningful to identify and study the function of the genes related to pollen development and male sterility, which still not fully understanding currently. In this study, Yanzhan 4110S, a new thermo-sensitive genic male sterility (TGMS) wheat line, and its near isogenic line Yanzhan 4110 were carried out cytological features observation, bioinformatics analysis to investgate the abortion state and identified the genes involved in pollen development which have fertility regulation function. Barely stripe mosaic virus-induced gene silencing was used to verify the genes function.Results: Cytological analysis showed pollen abortion event of Yanzhan 4110S occur at the later uninucleate stage (Lun) under higher temperature induction (day/night temperatures of 22 °C/20 °C), when the anthers were collected and assessed for transcriptomic profiling through high-throughput sequencing. We then in-depth analyzed the differentially expressed genes (DEGs) by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, the results showed that the occurrence of Yanzhan 4110S male-sterility most likely related to metabolic pathway, including phenylpropanoid biosynthesis in the biosynthesis of other secondary metabolites, starch and sucrose metabolism in carbohydrate metabolism, carbon fixation in photosynthetic organisms as well as carbon metabolism in energy metabolism. The weighted gene co-expression network analysis in the transcriptome profiles further identified some hub genes, where the key genes involved in those pathways were intersection between the unique DEGs of Yanzhan 4110S in anther and hub genes, totally 228 genes, which were highly related to pollen development including TaMut11 and TaSF3. Moreover, further verification through barely stripe mosaic virus-induced gene silencing elucidated that the silencing of TaMut11 and TaSF3 caused pollen abortion, finally resulting in the declination of fertility. So, the genes TaMut11 and TaSF3 are related to fertility conversion of Yanzhan 4110S.Conclusion: Through comparative transcriptome bioinformatics analysis, the genes TaMut11 and TaSF3 associated with pollen development and male sterility induced by high temperature were identified in Yanzhan 4110S, and verificated by barely stripe mosaic virus-induced gene silencing. These findings provided researching the abortive mechanism in environment-sensitive genic male sterility wheat.


2007 ◽  
Vol 20 (11) ◽  
pp. 1323-1331 ◽  
Author(s):  
Marianne Bruun-Rasmussen ◽  
Christian Toft Madsen ◽  
Stine Jessing ◽  
Merete Albrechtsen

Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting photobleaching in infected barley plants was used as a reporter for silencing. In addition, downregulation of PDS mRNA was measured by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Using fragments of PDS ranging from 128 to 584 nucleotides in BSMV, we observed that insert length influenced stability but not efficiency of VIGS. Silencing was transient in most cases; however, the decrease in PDS mRNA levels measured by qRT-PCR began earlier and lasted longer than the photobleaching. Occasionally, silencing persisted and could be transmitted through seed as well as via mechanical inoculation, although large parts of the insert had been lost from the virus vector. The instability of the insert, observed consistently throughout our experiments, offers an explanation for the transient nature of silencing when using BSMV as a VIGS vector.


Sign in / Sign up

Export Citation Format

Share Document