The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

2011 ◽  
Vol 406 (3) ◽  
pp. 478-482 ◽  
Author(s):  
Juan Carlos Fierro-González ◽  
María González-Barrios ◽  
Antonio Miranda-Vizuete ◽  
Peter Swoboda
Aging Cell ◽  
2010 ◽  
Vol 10 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Laurent Mouchiroud ◽  
Laurent Molin ◽  
Prasad Kasturi ◽  
Mohamed N. Triba ◽  
Marc Emmanuel Dumas ◽  
...  

2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Edward R. Ivimey-Cook ◽  
Kris Sales ◽  
Hanne Carlsson ◽  
Simone Immler ◽  
Tracey Chapman ◽  
...  

Dietary restriction (DR) increases lifespan in a broad variety of organisms and improves health in humans. However, long-term transgenerational consequences of dietary interventions are poorly understood. Here, we investigated the effect of DR by temporary fasting (TF) on mortality risk, age-specific reproduction and fitness across three generations of descendants in Caenorhabditis elegans . We show that while TF robustly reduces mortality risk and improves late-life reproduction of the individuals subject to TF (P 0 ), it has a wide range of both positive and negative effects on their descendants (F 1 –F 3 ). Remarkably, great-grandparental exposure to TF in early life reduces fitness and increases mortality risk of F 3 descendants to such an extent that TF no longer promotes a lifespan extension. These findings reveal that transgenerational trade-offs accompany the instant benefits of DR, underscoring the need to consider fitness of future generations in pursuit of healthy ageing.


2021 ◽  
Vol 13 ◽  
Author(s):  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Mihiri Munasinghe ◽  
Markandeya Jois

Background: The antidepressant mianserin has been shown to extend the lifespan of Caenorhabditis elegans (C. elegans), a well-established model organism used in aging research. The extension of lifespan in C. elegans was shown to be dependent on increased expression of the scaffolding protein (ANK3/unc-44). In contrast, antidepressant use in humans is associated with an increased risk of death. The C. elegans in the laboratory are fed Escherichia coli (E. coli), a diet high in protein and low in carbohydrate, whereas a typical human diet is high in carbohydrates. We hypothesized that dietary carbohydrates might mitigate the lifespan-extension effect of mianserin. Objective: To investigate the effect of glucose added to the diet of C. elegans on the lifespan-extension effect of mianserin. Methods: Wild-type Bristol N2 and ANK3/unc-44 inactivating mutants were cultured on agar plates containing nematode growth medium and fed E. coli. Treatment groups included (C) control, (M50) 50 μM mianserin, (G) 73 mM glucose, and (M50G) 50 μM mianserin and 73 mM glucose. Lifespan was determined by monitoring the worms until they died. Statistical analysis was performed using the Kaplan-Meier version of the log-rank test. Results: Mianserin treatment resulted in a 12% increase in lifespan (P<0.05) of wild-type Bristol N2 worms but reduced lifespan by 6% in ANK3/unc-44 mutants, consistent with previous research. The addition of glucose to the diet reduced the lifespan of both strains of worms and abolished the lifespan-extension by mianserin. Conclusion: The addition of glucose to the diet of C. elegans abolishes the lifespan-extension effects of mianserin.


PLoS Genetics ◽  
2016 ◽  
Vol 12 (9) ◽  
pp. e1006326 ◽  
Author(s):  
Douglas J. Cattie ◽  
Claire E. Richardson ◽  
Kirthi C. Reddy ◽  
Elan M. Ness-Cohn ◽  
Rita Droste ◽  
...  

2014 ◽  
Vol 31 ◽  
pp. S203-S204
Author(s):  
Sang-Kyu Park ◽  
Jin-Kook Park ◽  
Chul-Kyu Kim ◽  
Sang-Ki Kong ◽  
A-Reum Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document