Probiotic Potential
Recently Published Documents





2021 ◽  
Vol 11 (21) ◽  
pp. 9867
Mihaela Dumitru ◽  
Dan Cristian Vodnar ◽  
Simon Elemer ◽  
Georgeta Ciurescu ◽  
Mihaela Habeanu ◽  

A total of 15 strains of lactic acid bacteria (LAB) were isolated from the broiler chicken’s gastrointestinal tract. All isolates were phenotypical and genetically identified. Among these isolates, only six were biochemical (API 50 CHL and ABIS soft) and genetically (16S rRNA sequencing) confirmed as Lactobacillus acidophilus, Limosilactobacillus fermentum, Levilactobacillus brevis, and Ligilactobacillus salivarius. Probiotic properties, including tolerance to pH (pH 2.0 and 3.0), bile salts (0.3% oxgall), hemolysis activity, and antibiotic susceptibility, were evaluated. Three isolates of the latter isolates showed high resistance at low pH values (73.74% to 98.20%) and bile salt concentrations (77.89% to 99.49%). The antibiotic test presented 100% resistance of LAB to gentamicin, lincomycin, enrofloxacin, and streptomycin lower than the 0.5 mm inhibition zone diameter. Selected strains (L. acidophilus IBNA 64, L. salivarius IBNA 33, and L. salivarius IBNA 41) were exposed to the spray-drying process based on observable probiotic potential. A maltodextrin-glucose solution was used as a thermoprotectant. After spray drying, a reduction in strain viability was noted (108 to 104 CFU/g). In conclusion, only L. salivarius (IBNA 33 and IBNA 41) could be used as a possible probiotic, and further studies are needed to ensure their safe application in the animal nutrition field with beneficial effects for improving performance and pathogen microorganism control from intestines equilibrating the microbiota composition.

2021 ◽  
Z. Alkay ◽  
E. Dertli ◽  
M.Z. Durak

Abstract In this study, 14 yeast cultures from 62 isolates from traditional sourdoughs collected from 6 different regions of Turkey were selected by FT-IR identification and characterised to reveal their probiotic properties. Four yeast strains were genotypically identified and compared with FT-IR identification. In all analyses, it was observed that mostly Saccaromyces cerevisiae strain exhibited high hydrophobicity, auto-aggregation feature, and all yeast isolates in this study showed tolerance to 0.3%, even salt concentration. In addition, all yeast strains were susceptible to anti-yeasts agents, although they were resistant to all antibiotics used in the study. All selected yeast isolates exhibited high antimicrobial activity against the Staphylococcus aureus. In conclusion, this study investigated the potential probiotic properties of yeast strains isolated from sourdough.

2021 ◽  
Vol 9 (10) ◽  
pp. 2141
Ji Young Jung ◽  
Sang-Soo Han ◽  
Z-Hun Kim ◽  
Myung Hoo Kim ◽  
Hye Kyeong Kang ◽  

Lactic acid bacteria (LAB) are probiotic candidates that may restore the balance of microbiota populations in intestinal microbial ecosystems by controlling pathogens and thereby promoting host health. The goal of this study was to isolate potential probiotic LAB strains and characterize their antimicrobial abilities against pathogens in intestinal microbiota. Among 54 LAB strains isolated from fermented products, five LAB strains (NSMJ15, NSMJ16, NSMJ23, NSMJ42, and NFFJ04) were selected as potential probiotic candidates based on in vitro assays of acid and bile salt tolerance, cell surface hydrophobicity, adhesion to the intestinal epithelium, and antagonistic activity. Phylogenetic analysis based on 16S rRNA genes showed that they have high similarities of 99.58–100% to Lacticaseibacillus paracasei strains NSMJ15 and NFFJ04, Lentilactobacillus parabuchneri NSMJ16, Levilactobacillus brevis NSMJ23, and Schleiferilactobacillus harbinensis NSMJ42. To characterize their antimicrobial abilities against pathogens in intestinal microbiota, the impact of cell-free supernatant (CFS) treatment in 10% (v/v) fecal suspensions prepared using pooled cattle feces was investigated using in vitro batch cultures. Bacterial community analysis using rRNA amplicon sequencing for control and CFS-treated fecal samples at 8 and 16 h incubation showed the compositional change after CFS treatment for all five LAB strains. The changed compositions were similar among them, but there were few variable increases or decreases in some bacterial groups. Interestingly, as major genera that could exhibit pathogenicity and antibiotic resistance, the members of Bacillus, Escherichia, Leclercia, Morganella, and Vagococcus were decreased at 16 h in all CFS-treated samples. Species-level classification suggested that the five LAB strains are antagonistic to gut pathogens. This study showed the probiotic potential of the five selected LAB strains; in particular, their antimicrobial properties against pathogens present in the intestinal microbiota. These strains would therefore seem to play an important role in modulating the intestinal microbiome of the host.

2021 ◽  
Vol 11 (20) ◽  
pp. 9447
Balamuralikrishnan Balasubramanian ◽  
Ilavenil Soundharrajan ◽  
Naif Abdullah Al-Dhabi ◽  
Ponnuswamy Vijayaraghavan ◽  
Kaleeswaran Balasubramanian ◽  

The forage crops corn (Zea mays) and foxtail millet (Panicum italicum L.) are widely used as animal feed because of their high nutritive values. The ensiling of corn and foxtail millet is often associated with the growth of undesirable microbes, which cause severe loss of dry matter content during the storage periods. The selection of suitable Ligilactobacillus species for corn-fox tail millet silage production can improve the quality. In this study, we aimed to select potent lactic acid bacteria (LAB) from sheep dung and analyses their biological application such as probiotic features, antimicrobial activities and fermentation capability of silage. A total of nine Lactobacillus strains were inoculated in MRS medium to evaluate lactic acid concentration. The isolated strain, Ligilactobacillus salivarius AS22, produced a higher lactic acid level (40.2 ± 2.2 µg/mL) with high growth rates (2.24 ± 0.12 OD at 600 nm) compared to other strains. The silage treated with inoculant (L. salivarius AS22) decreased the pH value (p < 0.05) and enhanced lactic acid production (p < 0.05) than the control at ensiled silages. LAB inoculated silage had reduced numbers of fungal colonies than control (p < 0.05). In conclusion, the addition of L. salivarius AS22 improved the quality of whole corn and foxtail millet silages with significant probiotic potential.

Júlia Carvalho de Medeiros ◽  
Eliana dos Santos Leandro ◽  
Iriani Rodrigues Maldonade ◽  
Ernandes Rodrigues de Alencar ◽  
Claudia Silva da Costa Ribeiro ◽  

2021 ◽  
Vol 12 ◽  
Suelen Aparecida Suphoronski ◽  
Felipe Pinheiro de Souza ◽  
Roberta Torres Chideroli ◽  
Leonardo Mantovani Favero ◽  
Natália Amoroso Ferrari ◽  

In the present study, we evaluated the effects of administering Enterococcus faecium in food and/or water on the hematological and immunological parameters, intestinal microbiota, resistance to bacterial diseases (streptococcosis and francisellosis) and growth of Nile tilapia. Before the in vivo experiment, probiotic bacteria isolated from Nile tilapia were selected via inhibition tests. Sequencing, annotation, and assembly of the complete genome of the selected bacteria as well as other tests were performed using bioinformatics tools. Three treatments were implemented: G1 (probiotic feeding), G2 (probiotic in water), and G3 (probiotic in food and water); and a negative control (NC) was also employed. Treatment lasted 38 days, and each group consisted of fish and two repetitions. The fish were divided and infected with Streptococcus agalactiae S13 (serotype Ib) and Francisella orientalis. The G1 group had a higher average final weight gain than the G2, G3, and NC groups. Further, a significant increase in the number of thrombocytes was observed in the groups administered probiotics in the diet (G1 and G3). A statistical difference was observed in the mortality of fish infected with S. agalactiae in the NC compared to the treated groups. Cetobacterium was the 43 most abundant genus in the intestinal microbiota of all groups, including the NC group. E. faecium increased the immunity of fish administered the treatment and decreased the mortality caused by S. agalactiae. As an autochtone probiotic, E. faecium does not interfere with the local ecosystem and thus has a great probiotic potential for Nile tilapia in Brazil.

2021 ◽  
Vol 12 ◽  
Shenglei Yuan ◽  
Yundan Wang ◽  
Fangqing Zhao ◽  
Le Kang

The genus Weissella is attracting an increasing amount of attention because of its multiple functions and probiotic potential. In particular, the species Weissella confusa is known to have great potential in industrial applications and exhibits numerous biological functions. However, the knowledge on this bacterium in insects is not investigated. Here, we isolated and identified W. confusa as the dominant lactic acid bacteria in the gut of the migratory locust. We named this strain W. confusa LM1, which is the first genome of an insect-derived W. confusa strain with one complete chromosome and one complete plasmid. Among all W. confusa strains, W. confusa LM1 had the largest genome. Its genome was the closest to that of W. confusa 1001271B_151109_G12, a strain from human feces. Our results provided accurate evolutionary relationships of known Weissella species and W. confusa strains. Based on genomic analysis, the pan-genome of W. confusa is in an open state. Most strains of W. confusa had the unique genes, indicating that these strains can adapt to different ecological niches and organisms. However, the variation of strain-specific genes did represent significant correlations with their hosts and ecological niches. These strains were predicted to have low potential to produce secondary metabolites. Furthermore, no antibiotic resistance genes were identified. At the same time, virulence factors associated with toxin production and secretion system were not found, indicating that W. confusa strains were not sufficient to perform virulence. Our study facilitated the discovery of the functions of W. confusa LM1 in locust biology and their potential application to locust management.

2021 ◽  
Vol 11 (1) ◽  
Aida Yuste ◽  
Esteban Leonardo Arosemena ◽  
M. Àngels Calvo

AbstractThe benefits of probiotics for the improvement of animal health status have been of great interest in recent years. For this reason, in this study was aimed at assessing a strain with probiotic potential to be added to the feed. Therefore, the objective of this trial is to use a strain with probiotic potential isolated from the intestinal microbiota of Helix aspersa Müller to subsequently add it to the feed of this species to improve its health status. So, the strain is characterized, and its probiotic potential is demonstrated. Finally, with the aim of preserving the probiotic strain by freeze-drying so that it can later be added to the feed, different cryoprotectants were studied that could give it a higher survival rate over time. The cryoprotectant that gives the best result with strain survival rate is trehalose 15%.

Tchamba Mbiada Mervie Noël ◽  
Bouba Adji Mohammadou ◽  
Nodem Shanang Francky Steve ◽  
Léopold Ngoune Tatsadjieu ◽  
Mbarga Manga Joseph Arsene ◽  

Background and Aim: Lactic acid bacteria (LAB) became a field of interest by scientists in recent years due to their technological and probiotic properties. The aim of this work was to study the technological and probiotic properties of LAB isolated from the bottle gourds (calabashes)of milk fermentation, in Mbéré, Cameroun. Methods: Five different bottle gourds from milk fermentation were collected and used for LAB isolation. These LABs were characterized using conventional cultural method, the technological (such as proteolytic, lipolytic activities) and probiotic properties (including acid and bile salt tolerance, cholesterol assimilation and antioxidant activities) were assessed. Results: From these samples, 30 LABs were isolated and among them, 21 exhibited great lipolytic and proteolytic activities with the maximum values of 18 and 29 mm respectively. In addition, 10 LAB isolates showed interesting antimicrobial activity against pathogens germs tested and good tolerance ability under acid and bile salt stress after 24h of incubation. Cholesterol assimilation and antioxidant tests revealed that isolated BC4 and BC3 have the greatest activity (35 and 39 mm respectively) while, BC4 and BL4 have the greatest antioxidant activity (IC50 = 0,15 and 0,13 respectively). Conclusion: LAB isolated from the bottle gourds (calabashes) of milk fermentation, in Mbéré, Cameroon can be used to develop dairy industry and manage the cardiovascular diseases.

Sign in / Sign up

Export Citation Format

Share Document