KRAS-induced actin-interacting protein regulates inositol 1,4,5-trisphosphate-receptor-mediated calcium release

2011 ◽  
Vol 408 (2) ◽  
pp. 214-217 ◽  
Author(s):  
Takahiro Fujimoto ◽  
Takashi Machida ◽  
Toshiyuki Tsunoda ◽  
Keiko Doi ◽  
Takeharu Ota ◽  
...  
1994 ◽  
Vol 98 (2) ◽  
pp. 147-156 ◽  
Author(s):  
Ludwig Missiaen ◽  
Jan B. Parys ◽  
Humbert De Smedt ◽  
Masahiro Oike ◽  
Rik Casteels

1995 ◽  
Vol 15 (5) ◽  
pp. 387-397 ◽  
Author(s):  
Cecilia Hidalgo ◽  
Paulina Donoso

This article discusses how changes in luminal calcium concentration affect calcium release rates from triad-enriched sarcoplasmic reticulum vesicles, as well as single channel opening probability of the ryanodine receptor/calcium release channels incorporated in bilayers. The possible participation of calsequestrin, or of other luminal proteins of sarcoplasmic reticulum in this regulation is addressed. A comparison with the regulation by luminal calcium of calcium release mediated by the inositol 1,4,5-trisphosphate receptor/calcium channel is presented as well.


2007 ◽  
Vol 283 (2) ◽  
pp. 1128-1136 ◽  
Author(s):  
Ying Chen ◽  
Ting Cai ◽  
Changjun Yang ◽  
David A. Turner ◽  
David R. Giovannucci ◽  
...  

Neuron ◽  
1990 ◽  
Vol 5 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Atsushi Miyawaki ◽  
Teiichi Furuichi ◽  
Nobuaki Maeda ◽  
Katsuhiko Mikoshiba

2005 ◽  
Vol 280 (16) ◽  
pp. 15912-15920 ◽  
Author(s):  
Dan J. Bare ◽  
Claudia S. Kettlun ◽  
Mei Liang ◽  
Donald M. Bers ◽  
Gregory A. Mignery

The type 2 inositol 1,4,5-trisphosphate receptor (InsP3R2) was identified previously as the predominant isoform in cardiac ventricular myocytes. Here we reported the subcellular localization of InsP3R2 to the cardiomyocyte nuclear envelope (NE). The other major known endo/sarcoplasmic reticulum calcium-release channel (ryanodine receptor) was not localized to the NE, indicating functional segregation of these channels and possibly a unique role for InsP3R2 in regulating nuclear calcium dynamics. Immunoprecipitation experiments revealed that the NE InsP3R2 associates with Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ), the major isoform expressed in cardiac myocytes. Recombinant InsP3R2 and CaMKIIδBalso co-immunoprecipitated after co-expression in COS-1 cells. Additionally, the amino-terminal 1078 amino acids of the InsP3R2 were sufficient for interaction with CaMKIIδBand associated upon mixing following separate expression. CaMKII can also phosphorylate InsP3R2, as demonstrated by32P labeling. Incorporation of CaMKII-treated InsP3R2 into planar lipid bilayers revealed that InsP3-mediated channel open probability is significantly reduced (∼11 times) by phosphorylation via CaMKII. We concluded that the InsP3R2 and CaMKIIδ likely represent two central components of a multiprotein signaling complex, and this raises the possibility that calcium release via InsP3R2 in the myocyte NE may activate local CaMKII signaling, which may feedback on InsP3R2 function.


Sign in / Sign up

Export Citation Format

Share Document