AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington’s disease

2012 ◽  
Vol 420 (3) ◽  
pp. 558-563 ◽  
Author(s):  
Amparo Zuleta ◽  
Rene L. Vidal ◽  
Donna Armentano ◽  
Geoffrey Parsons ◽  
Claudio Hetz
PLoS Currents ◽  
2012 ◽  
Vol 4 ◽  
pp. e4fd085bfc9973 ◽  
Author(s):  
Christian Landles ◽  
Andreas Weiss ◽  
Sophie Franklin ◽  
David Howland ◽  
Gill Bates

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shreyaas Aravindan ◽  
Samantha Chen ◽  
Hannaan Choudhry ◽  
Celine Molfetta ◽  
Kuang Yu Chen ◽  
...  

Abstract Osmolytes are organic solutes that change the protein folding landscape shifting the equilibrium towards the folded state. Herein, we use osmolytes to probe the structuring and aggregation of the intrinsically disordered mutant Huntingtin (mHtt) vis-a-vis the pathogenicity of mHtt on transcription factor function and cell survival. Using an inducible PC12 cell model of Huntington’s disease (HD), we show that stabilizing polyol osmolytes drive the aggregation of Htt103QExon1-EGFP from a diffuse ensemble into inclusion bodies (IBs), whereas the destabilizing osmolyte urea does not. This effect of stabilizing osmolytes is innate, generic, countered by urea, and unaffected by HSP70 and HSC70 knockdown. A qualitatively similar result of osmolyte-induced mHtt IB formation is observed in a conditionally immortalized striatal neuron model of HD, and IB formation correlates with improved survival under stress. Increased expression of diffuse mHtt sequesters the CREB transcription factor to repress CREB-reporter gene activity. This repression is mitigated either by stabilizing osmolytes, which deplete diffuse mHtt or by urea, which negates protein–protein interaction. Our results show that stabilizing polyol osmolytes promote mHtt aggregation, alleviate CREB dysfunction, and promote survival under stress to support the hypothesis that lower molecular weight entities of disease protein are relevant pathogenic species in neurodegeneration.


2014 ◽  
Vol 20 (5) ◽  
pp. 536-541 ◽  
Author(s):  
Nan Wang ◽  
Michelle Gray ◽  
Xiao-Hong Lu ◽  
Jeffrey P Cantle ◽  
Sandra M Holley ◽  
...  

Neuron ◽  
1999 ◽  
Vol 23 (1) ◽  
pp. 181-192 ◽  
Author(s):  
J.Graeme Hodgson ◽  
Nadia Agopyan ◽  
Claire-Anne Gutekunst ◽  
Blair R Leavitt ◽  
Fred LePiane ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258486
Author(s):  
Taneli Heikkinen ◽  
Timo Bragge ◽  
Juha Kuosmanen ◽  
Teija Parkkari ◽  
Sanna Gustafsson ◽  
...  

Huntington’s disease (HD) results from an expansion mutation in the polyglutamine tract in huntingtin. Although huntingtin is ubiquitously expressed in the body, the striatum suffers the most severe pathology. Rhes is a Ras-related small GTP-binding protein highly expressed in the striatum that has been reported to modulate mTOR and sumoylation of mutant huntingtin to alter HD mouse model pathogenesis. Reports have varied on whether Rhes reduction is desirable for HD. Here we characterize multiple behavioral and molecular endpoints in the Q175 HD mouse model with genetic Rhes knockout (KO). Genetic RhesKO in the Q175 female mouse resulted in both subtle attenuation of Q175 phenotypic features, and detrimental effects on other kinematic features. The Q175 females exhibited measurable pathogenic deficits, as measured by MRI, MRS and DARPP32, however, RhesKO had no effect on these readouts. Additionally, RhesKO in Q175 mixed gender mice deficits did not affect mTOR signaling, autophagy or mutant huntingtin levels. We conclude that global RhesKO does not substantially ameliorate or exacerbate HD mouse phenotypes in Q175 mice.


Sign in / Sign up

Export Citation Format

Share Document