EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

2015 ◽  
Vol 457 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Da-min Gu ◽  
Pei-Hua Lu ◽  
Ke Zhang ◽  
Xiang Wang ◽  
Min Sun ◽  
...  
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Anthony R. Anzell ◽  
Garrett M. Fogo ◽  
Zoya Gurm ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractMitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1838 ◽  
Author(s):  
Yi Zhang ◽  
Ying Zhang ◽  
Xiao-fei Jin ◽  
Xiao-hong Zhou ◽  
Xian-hui Dong ◽  
...  

Background: Ischemia/reperfusion (I/R) caused by ischemic stroke treatments leads to brain injury, and autophagy plays a role in the pathology. Astragaloside IV is a potential neuroprotectant, but its underlying mechanism on cerebral I/R injury needs to be explored. The objective of this study is to investigate the neuroprotective mechanism of Astragaloside IV against cerebral I/R injury. Methods: Middle cerebral artery occlusion method (MCAO) and oxygen and glucose deprivation/reoxygenation (OGD/R) method were used to simulate cerebral I/R injury in Sprague-Dawley (SD) rats and HT22 cells, respectively. The neurological score, 2,3,5-Triphe-nyltetrazolium chloride (TTC) staining, and transmission electron microscope were used to detect cerebral damage in SD rats. Cell viability and cytotoxicity assay were tested in vitro. Fluorescent staining and flow cytometry were applied to detect the level of apoptosis. Western blotting was conducted to examine the expression of proteins associated with autophagy. Results: This study found that Astragaloside IV could decrease the neurological score, reduce the infarct volume in the brain, and alleviate cerebral I/R injury in MCAO rats. Astragaloside IV promoted cell viability and balanced Bcl-2 and Bax expression in vitro, reduced the rate of apoptosis, decreased the expression of P62, and increased the expression of LC3II/LC3I in HT22 cells after OGD/R. Conclusions: These data suggested that Astragaloside IV plays a neuroprotective role by down-regulating apoptosis by promoting the degree of autophagy.


Author(s):  
Jiun Hsu ◽  
Chih-Hsien Wang ◽  
Shu-Chien Huang ◽  
Yung-Wei Chen ◽  
Shengpin Yu ◽  
...  

Ischemic neuron loss contributes to brain dysfunction in patients with cardiac arrest (CA). Histidine–tryptophan–ketoglutarate (HTK) solution is a preservative used during organ transplantation. Can HTK also protect neurons from severe hypoxia (SH) following CA? We isolated rat primary cortical neurons and induced SH with or without HTK. Changes in caspase-3, hypoxia-inducible factor 1-alpha (HIF-1α), and NADPH oxidase-4 (NOX4) expression were evaluated at different time points till 72 h. Using a rat asphyxia model, we induced CA-mediated brain damage and then completed resuscitation. HTK or sterile saline was administered into the left carotid artery. Neurological deficit scoring and mortality were evaluated for 3 days. Then the rats were sacrificed for evaluating NOX4 and H2O2 level in blood and brain. In the in vitro study, HTK attenuated SH- and H2O2-mediated cytotoxicity in a volume- and time-dependent manner, associated with persisted HIF-1α expression, reductions in procaspase-3 activation and NOX4 expression. The inhibition of HIF-1α abrogated HTK’s effect on NOX4. In the in vivo study, neurological scores were significantly improved by HTK. H2O2 level, NOX4 activity and NOX4 gene expression were all decreased in the brain specimen of HTK-treated rats. Our results suggest that HTK acts as an effective neuroprotective solution.


2021 ◽  
Vol 04 (03) ◽  
Author(s):  
Sevil Korkmaz-Icöz ◽  
Mona Isabella Benker ◽  
Shiliang Li ◽  
Sivakkanan Loganathan ◽  
Patricia Kraft ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document