Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture

2017 ◽  
Vol 493 (1) ◽  
pp. 246-251 ◽  
Author(s):  
Lucas A. Maddalena ◽  
Shehab M. Selim ◽  
Joao Fonseca ◽  
Holt Messner ◽  
Shannon McGowan ◽  
...  
2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Mohd Helmi Sani ◽  
Frank Baganz

At present, there are a number of commercial small scale shaken systems available on the market with instrumented controllable microbioreactors such as Micro–24 Microreactor System (Pall Corporation, Port Washington, NY) and M2P Biolector, (M2P Labs GmbH, Aachen, Germany). The Micro–24 system is basically an orbital shaken 24–well plate that operates at working volume 3 – 7 mL with 24 independent reactors (deep wells, shaken and sparged) running simultaneously. Each reactor is designed as single use reactor that has the ability to continuously monitor and control the pH, DO and temperature. The reactor aeration is supplied by sparging air from gas feeds that can be controlled individually. Furthermore, pH can be controlled by gas sparging using either dilute ammonia or carbon dioxide directly into the culture medium through a membrane at the bottom of each reactor. Chen et al., (2009) evaluated the Micro–24 system for the mammalian cell culture process development and found the Micro–24 system is suitable as scaledown tool for cell culture application. The result showed that intra-well reproducibility, cell growth, metabolites profiles and protein titres were scalable with 2 L bioreactors.


In Vitro ◽  
1973 ◽  
Vol 8 (5) ◽  
pp. 375-378 ◽  
Author(s):  
Arthur H. Intosh ◽  
K. Maramorosch ◽  
C. Rechtoris

1999 ◽  
Vol 34 (2) ◽  
pp. 159-165 ◽  
Author(s):  
J. Feuser ◽  
M. Halfar ◽  
D. Lütkemeyer ◽  
N. Ameskamp ◽  
M.-R. Kula ◽  
...  

1983 ◽  
Vol 1 (4) ◽  
pp. 102-108 ◽  
Author(s):  
M.W. Glacken ◽  
R.J. Fleischaker ◽  
A.J. Sinskey

1991 ◽  
Vol 20 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Meelis Kolmer ◽  
Tõnis Örd ◽  
Ismo Ulmanen

1990 ◽  
Vol 35 (1) ◽  
pp. 43-49 ◽  
Author(s):  
M. Johnson ◽  
G. André ◽  
C. Chavarie ◽  
J. Archambault

Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 157 ◽  
Author(s):  
Joao Fonseca ◽  
Fereshteh Moradi ◽  
Andrew Valente ◽  
Jeffrey Stuart

Resveratrol is a plant-derived polyphenol that has been widely studied for its putative health promoting effects. Many of those studies have been conducted in cell culture, in supra-physiological levels of oxygen and glucose. Resveratrol interacts with reactive oxygen species (ROS) as an antioxidant or pro-oxidant. Resveratrol affects the expression and activities of ROS-producing enzymes and organelles. It is therefore important to consider how cell culture conditions might determine the effects of resveratrol on cultured cells. We determined the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics in C2C12 mouse myoblasts and PC3 human prostate cancer cells under conditions of physiological (5%) and supra-physiological (18%) oxygen, and normo- (5 mM) and hyper-glycemia (25 mM). Interestingly, most effects of resveratrol on the parameters measured here were dependent upon prevailing oxygen and glucose levels during the experiment. Many of the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics that were seen in 25 mM glucose and/or 18% oxygen were absent under the physiologically relevant conditions of 5 mM glucose with 5% oxygen. These findings emphasize the importance of using physiologically meaningful starting conditions for cell-culture experiments with resveratrol and indeed any manipulation affecting ROS metabolism and mitochondria.


Sign in / Sign up

Export Citation Format

Share Document