scholarly journals Transplantation of dedifferentiation fat cells promotes intervertebral disc regeneration in a rat intervertebral disc degeneration model

2017 ◽  
Vol 493 (2) ◽  
pp. 1004-1009 ◽  
Author(s):  
Enshi Nakayama ◽  
Taro Matsumoto ◽  
Tomohiko Kazama ◽  
Koichiro Kano ◽  
Yasuaki Tokuhashi
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Caiping Yan ◽  
Xingkuan Wang ◽  
Chao Xiang ◽  
Yong Wang ◽  
Chaoyu Pu ◽  
...  

Intervertebral disc degeneration (IDD) is caused by genetics, aging, and environmental factors and is one of the leading causes of low back pain. The treatment of IDD presents many challenges. Hydrogels are biomaterials that possess properties similar to those of the natural extracellular matrix and have significant potential in the field of regenerative medicine. Hydrogels with various functional qualities have recently been used to repair and regenerate diseased intervertebral discs. Here, we review the mechanisms of intervertebral disc homeostasis and degeneration and then discuss the applications of hydrogel-mediated repair and intervertebral disc regeneration. The classification of artificial hydrogels and natural hydrogels is then briefly introduced, followed by an update on the development of functional hydrogels, which include noncellular therapeutic hydrogels, cellular therapeutic hydrogel scaffolds, responsive hydrogels, and multifunctional hydrogels. The challenges faced and future developments of the hydrogels used in IDD are discussed as they further promote their clinical translation.


Author(s):  
Lei Yu ◽  
Yi Liu ◽  
Jianxin Wu ◽  
Shuang Wang ◽  
Jiangming Yu ◽  
...  

Intervertebral disc degeneration (IDD) is the pathological basis of disc degenerative diseases (DDD). Reduction in the number of cells and degeneration of the extracellular matrix (ECM) in the nucleus pulposus (NP) are characteristics of IDD. Bio-hydrogel combined with stem cell transplantation is a promising treatment. Injectable ECM hydrogels have good biological activity and in-situ gelatinization. However, its biomechanics and stability are insufficient to provide adequate mechanical support for intervertebral discs and to maintain the long-term differential stimulus for seeded stem cells. In our study, we developed genipin cross-linked decellularized nucleus pulposus hydrogel (GDH) as delivery system. We evaluated the mechanical properties, stability, biocompatibility, and differentiation induction of GDH cross-linked with different concentrations of genipin in vitro. The GDH-loaded adipose-derived mesenchymal stem cells (ADSCs) (GDHA) were injected into the rat degenerated coccygeal intervertebral disc. The effect of intervertebral disc regeneration in vivo was evaluated. The results showed that GDH with 0.02% of genipin had similar elastic modulus to human nucleus pulposus, good biocompatibility, and inducibility of expressing NP-related genes. In vivo studies showed that GDHA improved the survival of ADSCs and improved the intervertebral height, MRI index, and histological grading score. In conclusion, GDH, as an outstanding bio-hydrogel cell delivery system, has the therapeutic potential for retarding IDD.


Biomaterials ◽  
2010 ◽  
Vol 31 (22) ◽  
pp. 5836-5841 ◽  
Author(s):  
Michaela Endres ◽  
Alexander Abbushi ◽  
Ulrich W. Thomale ◽  
Mario Cabraja ◽  
Stefan N. Kroppenstedt ◽  
...  

Author(s):  
Saeeda Baig

During the recent past focus has shifted from identifying intervertebral disc degeneration as being caused by physical exposure and strain to being linked with a variety of genetic variations. The objective of this review is to provide an up to date review of the existing research data regarding the relation of intervertebral disc degeneration to structural protein genes and their polymorphisms and thus help clearly establish further avenues where research into causation and treatment is needed. A comprehensive search using the keywords “Collagen”, “COL”, “Aggrecan”, “AGC”, “IVDD”, “intervertebral disc degeneration”, and “lumbar disc degeneration” from PubMed and Google Scholar, where literature in the English language was selected spanning from 1991 to 2019. There are many genes involved in the production of structural components of an intervertebral disc. The issues in production of these components involve the over-expression or under-expression of their genes, and single nucleotide polymorphisms and variable number of tandem repeats affecting their structures. These structural genes include primarily the collagen and the aggrecan genes. While genetic and environmental factors all come into play with a disease process like disc degeneration, the bulk of research now shows the significantly larger impact of hereditary over exposure. While further research is needed into some of the lesser studied genes linked to IVDD and also the racial variations in genetic makeup, the focus in the near future should be on establishment of genetic testing to identify individuals at greater risk of disease and deliberation regarding the use of gene therapy to prevent disc degeneration.


2019 ◽  
Author(s):  
Takashi Ohnishi ◽  
Katsuhisa Yamada ◽  
Koji Iwasaki ◽  
Takeru Tsujimoto ◽  
Hideaki Higashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document